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Linear Repetitive Processes — Basics

A repetitive process is defined by a series of sweeps, termed passes,
through a set of dynamics defined over a finite and fixed duration known
as the pass length. On each pass an output, termed the pass profile, is
produced which acts as a forcing function on, and hence contributes to,
the dynamics of the next pass profile.

Key properties

I repetitive operation
each individual execution of operation is termed "pass",

I finite pass length
I interpass interaction

interaction between the state and/or output functions generated
during successive execution of operation.
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Repetitive Processes and 2-D Systems
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I Strong structural links but only in some cases.

I Repetitive processes have dynamics which have no counterparts in other
classes of 2-D systems.
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Applications

Physical examples
I Metal rolling operations.
I Long-wall coal cutting.
I Hard disk drives.
I Spatially-distributed systems.
I Distillation Column modelling.
I Vehicle Convoys.

Algorithmic examples
I Iterative learning control (ILC).
I Iterative algorithms for solving nonlinear dynamic optimal control

problems based on the maximum principle.



6/29

/w

Differential LRPs
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• The state space model (over 0 ≤ t ≤ α, k ≥ 0)

ẋk+1(t) =Axk+1(t)+ B0yk (t)+ Buk+1(t)

yk+1(t) =Cxk+1(t)+ D0yk (t)+ Duk+1(t)

• Boundary conditions
I the state initial vector on each pass xk+1(0), k ≥ 0,

I the initial pass profile y0(t) = f (t).
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LRPs – discrete time model

State space model

xk+1(p + 1) =Axk+1(p)+ B0yk (p)+ Buk+1(p)

yk+1(p) =Cxk+1(p)+ D0yk (p)+ Duk+1(p)

where
I p = {0,1, · · · , α − 1}
I A , B , B0, C , D , D0 – matrices computed from differential model

by the particular discretization method used with the discretization
period T .

Now the boundary conditions are

xk+1(0) =dk+1, k = 0,1, . . .

y0(p) =f (p), p = 0,1, . . . , α − 1.
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Stability theory

This consists of two distinct concepts
I asymptotic stability - basically BIBO stability over the pass length.
I stability along the pass - basically BIBO stability uniformly, i.e.

independent of the pass length.

Lemma
Linear Repetitive Process is asymptotically stable iff

ρ(D0) < 1

Asymptotic stability⇒ that {yk }k≥1 converges as k →∞ to the limit
profile

x∞(p + 1) =
(
A + B0(I − D0)

−1C
)

x∞(p)+ Bu∞(p)

y∞(p) =(I − D0)
−1Cx∞(p), x∞(0) = d∞
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Stability of Linear Repetitive Processes

A somewhat surprising result — independent of the state updating
dynamics!!

Resulting limit profile

x∞(p + 1) =
(
A + B0(I − D0)

−1C
)

x∞(p)+ Bu∞(p)

y∞(p) =(I − D0)
−1Cx∞(p), x∞(0) = d∞

This is a standard or 1-D linear system — ‘nice’(?) in terms of control or
not?
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Stability of Linear Repetitive Processes

In fact, asymptotic stability does not guarantee ’acceptable’ limit profile
dynamics.

Example

xk+1(p + 1) =− 0.5xk+1(p)+ uk+1(p)+ (0.5+ β)yk (p)

yk+1(p) =xk+1(p), xk+1(0) = 0, 0 ≤ p ≤ α − 1

This process is asymptotically stable but the resulting limit profile over
0 ≤ p ≤ α − 1

y∞(p + 1) = βy∞(p)+ u∞(p)

is unstable in 1D sense if |β| ≥ 1. (‘Growth’ term in the the along the
pass direction.)
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Stability along the pass

The problem here is the finite pass length. Stability along the pass
considers the case as α→∞

Theorem
Suppose that the pair {A ,B0} is controllable and the pair {C ,A } is
observable. Then the discrete linear repetitive process is stable along
the pass if, and only if,

1. ρ(D0) < 1

2. ρ(A ) < 1

3. all eigenvalues of G (z) = C (zI − A )−1B0 + D0 have modulus strictly
less than unity ∀|z| = 1
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Stability along the pass

Note for the simple example above r(A ) < 1 is only a necessary
condition — we also need the third condition (physical meaning
(differential case) each frequency component of the initial pass profile
must be attenuated from pass-to-pass and not just d.c. content
(asymptotic stability)).

For dynamic boundary conditions — asymptotic stability condition
becomes much more complex. Possible to test in discrete case by a 1-D
equivalent model — this is not the same as just applying 1-D linear
systems theory — in the differential case – still a headache!!!
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Stability along the pass

Unstable along the pass process Stable along the pass process
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Stability along the pass in term of LMI

Lemma
Assume that there exist matrices P1 � 0 and P2 � 0 of compatible
dimensions such that LMI −P2 P2C P2D0

C T P2 A T P1 + P1A P1B0

D T
0 P2 B T

0 P1 −P2

 ≺ 0

or 
−P1 0 P1A P1B0

0 −P2 P2C P2D0

A T P1 C T P2 −P1 0
B T

0 P1 D T
0 P2 0 −P2

≺0

hold, then the differential LRP (resp. the discrete LRP) is stable along
the pass.
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Towards a better result

I the Lyapunov matrices (P1 and P2) are not separated from the
process matrices;

I there are no slack matrix variables which can introduce
an additional flexibility in obtaining a solution;

Notation

I δ stands for the derivation or shifting operator (depending on the
differential or purely discrete case)

I

A =

[
A B0

C D0

]
and B =

[
B
D

]
I

sym(X ) = X + X T
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Stability along the pass in term of LMI

Theorem
Assume that there exist matrices Y1�0, Y2�0 and G of compatible
dimensions such that

ϒ+sym
([

A
−I

]
GI

)
≺0

where

ϒ =


0 0 Y1 0
0 −Y2 0 0

Y1 0 0 0
0 0 0 Y2

 or ϒ =


−Y1 0 0 0

0 −Y2 0 0
0 0 Y1 0
0 0 0 Y2


I =

[
I 0 I 0
0 0 0 I

]
or I =

[
0 0 I 0
0 0 0 I

]
then a differential LRP (resp. the discrete LRP) is stable along the pass
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Standard vs. Recent results

1. Improved results are provided without introducing any additional
degree of conservativeness

2. Improved results are obtained by mean of the matrix elimination
procedure

3. The matrix slack variable G has full form (not block diagonal) and
introduces extra degree of freedom

4. The matrix G is particularly useful in the robust context to introduce
parameter-dependent Lyapunov functions.
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A static feedback controller case

The control law

uk+1(p) =
[

K1 K2
] [ xk+1(p)

yk (p)

]
where

• K1 and K2 are matrices to be designed.

then the closed-loop process is

δξk = Acξk

where
Ac = A+BK
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Stabilization of nominal LRP

Theorem
Suppose that an LRP is subjected to the static control law then the
resulting closed-loop process is stable along the pass if there exist
matrices Y1 � 0, Y2 � 0, G and L such that

ϒ + sym
(([

A
−I

]
G +

[
B
0

]
L
)

I

)
≺ 0

In this case, the controller matrix is given by

K = LG−1
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Robust stability

Remarks:
I unlike previous results where matrices K1 and K2 are directly

deduced from dual Lyapunov matrices Y1 and Y2 , matrix K is here
computed with L and G

I this can bring additional flexibility, reducing conservativeness,
especially for the uncertain process case

I matrix G allows us to introduce parameter-dependent Lyapunov
functions when the model is itself parameter-dependent

Indeed, assume that a process is actually subject to uncertainty such
that it can be written

δξk+1 = Aξk + Buk+1

where [
A B

]
=
[

A B
]
+
[
1A 1B

]
.
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Uncertainty structure

Furthermore, it is assumed that matrices A and B dependent on a real
parameter vector θ with a polytopic dependency:

[
A B

]
=
[

A(θ) B(θ)
]
=

N∑
i=1

θi
[

Ai Bi
]
, θ ∈ 2

where

2 =

θ =
 θ1

...

θN

 : θi ≥ 0,
N∑

i=1

θ1 = 1

 .
It means that the various matrices [Ai Bi ], which are known, are the
vertices of a polytope in which the actual matrix [A B] lies.
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Uncertainty structure

Moreover, the additive uncertainties are assumed to be{
1A = HA FA EA , ||FA ||2 ≤ ρA ,

1B = HB FB EB , ||FB ||2 ≤ ρB .

I HA , HB , EA and EB give some desired structure to the additive
uncertainty

I FA and FB are uncertain matrices that belong to some balls of
matrices whose respective radii are ρA and ρB .

To make this description even more general, the matrices HA , HB , EA and
EB are also subjected to a polytopic dependency:[

HA HB E T
A E T

B

]
=
[

HA (θ) HB (θ) E T
A (θ) E T

B (θ)
]

=

N∑
i=1

θi
[

HAi HBi E T
Ai

E T
Bi

]
, θ ∈ 2.
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Robust stabilization

In this case, the uncertain closed-loop model becomes

δξk = (Ac +1A +1B K )ξk = Ac(θ)ξk ,

where Ac = A+BK inherits from the polytopic structure of A and B. It
is however false to claim that Ac is polytopic.

Definition
The uncertain closed-loop repetitive process is robustly stable along the
pass if and only if it is stable along a pass for any value of θ in2 and for
any matrices FA and FB such that ||FA ||2 ≤ ρA , ||FB ||2 ≤ ρB .



23/29

/w

Robust stabilization

In this case, the uncertain closed-loop model becomes

δξk = (Ac +1A +1B K )ξk = Ac(θ)ξk ,

where Ac = A+BK inherits from the polytopic structure of A and B. It
is however false to claim that Ac is polytopic.

Definition
The uncertain closed-loop repetitive process is robustly stable along the
pass if and only if it is stable along a pass for any value of θ in2 and for
any matrices FA and FB such that ||FA ||2 ≤ ρA , ||FB ||2 ≤ ρB .



24/29

/w

Robust stabilization

Theorem
Suppose that an LRP is subjected to the static control law then the resulting
closed-loop process is stable along if there exist matrices Y1i � 0, Y2i � 0,
i = 1, . . . ,N , as well as matrices G and L such that

Mi =



Qi IT

[
G T E T

Ai
0

0 L T E T
Bi

] [
HAi

HBi
0 0

]
(?)

[
−ρ−1

A 0
0 −ρ−1

B

]
0

(?) (?)

[
−ρ−1

A 0
0 −ρ−1

B

]


≺ 0

∀i ∈ {1, . . . ,N }

where

Qi = ϒi + sym
([

Ai G +Bi L
−I

]
I

)
with ϒi defined by indexing Y1 and Y2 in ϒ . In this case, the matrix K is given
by K = LG−1.
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Robust stabilization

Here, it has to be noticed that dual Lyapunov matrices involved in ϒ and
thus in Q also depend on θ in a polytopic way, i.e.[

Y1

Y2

]
=

[
Y1(θ)

Y2(θ)

]
=

N∑
i=1

θi

[
Y1i

Y2i

]
, θ ∈ 2

Finally, the convex programming problem that consists in minimizing the
objective function can be solved

J = αAρ
−1
A + αBρ

−1
B
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Numerical example (part1/3)

Consider the differential LRP represented by

[
A1 B1

]
=

0.1086 0.1538 0.0908 1.7362
0.0601 0.0694 0.0823 0.3614
0.0598 0.0084 0.1438 1.9599

 ,
[
A2 B2

]
=

1.0860 1.5380 0.9084 1.9292
0.6008 0.6944 0.8235 0.4016
0.5982 0.0837 1.4385 2.1777

 ,
[
A3 B3

]
=

1.3032 1.8457 1.0901 2.3150
0.7210 0.8333 0.9881 0.4819
0.7178 0.1004 1.7261 2.6132


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Numerical example (part2/3)

Norm-boud uncertainty is modelled with

[
HA1 HA2 HA3

]
=

0.0757 0.0773 0.0287
0.0609 0.0573 0.0752
0.0967 0.0450 0.0094

 ,
[

HB1 HB2 HB3

]
=

0.0107 0.0581 0.0360
0.0735 0.0299 0.0718
0.0355 0.0714 0.0995

 ,
EA1 =

[
0.0041 0.0329 0.0709

]
, EB1 = 0.0161

EA2 =
[

0.0860 0.0501 0.0995
]
, EB2 = 0.0159

EA3 =
[

0.0429 0.0267 0.0473
]
, EB3 = 0.0268.
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Numerical example (part3/3)

Design procedure for ρA = 0.1 and ρB = 0.1 gives the solution as

G =

−397.2800 −159.6062 10.8490
−560.0837 −237.1113 −2.5830
198.1517 79.5747 −4.1740

 ,
L =

[
−0.1723 0.2542 −0.1162

]
and the corresponding controller matrix is

K =
[
−0.1961 −0.0255 −0.4661

]
.
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Conclusions

I New results on the relatively open problem of robust control of
linear repetitive processes have been developed

I Separation of the Lyapunov matrices from the process matrices has
been presented - LMI conditions based on parameter dependent
Lyapunov functions can be derived

I The obtained result can be extended to the case of a quite general
affecting uncertainty affecting the model, namely the polytopic
normbounded uncertainty.

I Uncertainty is present on both the state dynamics and the pass
profile updating equations of the state space model.
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