NDS09 Thessaloniki, Greece, June 29 - July 1, 2009.

New Robust Stability and Stabilization Conditions for Linear Repetitive Processes

Wojciech Paszke W.Paszke@tue.nl Olivier Bachelier Olivier.Bachelier@univ-poitiers.fr

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

July 1, 2009

Linear Repetitive Processes Stability Theory for Linear repetitive processes Stability along the pass

Robust stability

Robust stabilization

Numerical Example

Conclusions and future works

Linear Repetitive Processes Stability Theory for Linear repetitive processes Stability along the pass

Robust stability

Robust stabilization

Numerical Example

Conclusions and future works

Linear Repetitive Processes Stability Theory for Linear repetitive processes Stability along the pass

Robust stability

Robust stabilization

Numerical Example

Conclusions and future works

Linear Repetitive Processes Stability Theory for Linear repetitive processes Stability along the pass

Robust stability

Robust stabilization

Numerical Example

Conclusions and future works

Linear Repetitive Processes Stability Theory for Linear repetitive processes Stability along the pass

Robust stability

Robust stabilization

Numerical Example

Conclusions and future works

A repetitive process is defined by a series of sweeps, termed **passes**, through a set of dynamics defined over a finite and fixed duration known as the **pass length**. On each pass an output, termed the **pass profile**, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile.

Key properties

- repetitive operation each individual execution of operation is termed "pass",
- finite pass length
- interpass interaction interaction between the state and/or output functions generated during successive execution of operation.

Repetitive Processes and 2-D Systems

- Strong structural links but only in some cases.
- Repetitive processes have dynamics which have no counterparts in other classes of 2-D systems.

Applications

Physical examples

- Metal rolling operations.
- Long-wall coal cutting.
- Hard disk drives.
- Spatially-distributed systems.
- Distillation Column modelling.
- Vehicle Convoys.

Algorithmic examples

- Iterative learning control (ILC).
- Iterative algorithms for solving nonlinear dynamic optimal control problems based on the maximum principle.

Differential LRPs

• The state space model (over $0 \le t \le \alpha$, $k \ge 0$)

$$\dot{x}_{k+1}(t) = Ax_{k+1}(t) + B_0y_k(t) + Bu_{k+1}(t)$$

$$y_{k+1}(t) = Cx_{k+1}(t) + D_0y_k(t) + Du_{k+1}(t)$$

- Boundary conditions
 ▶ the state initial vector on each pass x_{k+1}(0), k ≥ 0,
 - the initial pass profile $y_0(t) = f(t)$.

6/29

LRPs - discrete time model

State space model

$$x_{k+1}(p+1) = Ax_{k+1}(p) + B_0y_k(p) + Bu_{k+1}(p)$$

$$y_{k+1}(p) = Cx_{k+1}(p) + D_0y_k(p) + Du_{k+1}(p)$$

where

•
$$p = \{0, 1, \cdots, \alpha - 1\}$$

► A, B, B₀, C, D, D₀ – matrices computed from differential model by the particular discretization method used with the discretization period T.

Now the boundary conditions are

$$x_{k+1}(0) = d_{k+1}, \ k = 0, 1, \dots$$

 $y_0(p) = f(p), \ p = 0, 1, \dots, \alpha - 1.$

Stability theory

This consists of two distinct concepts

- asymptotic stability basically BIBO stability over the pass length.
- stability along the pass basically BIBO stability uniformly, i.e. independent of the pass length.

Lemma

Linear Repetitive Process is asymptotically stable iff

$$\rho(D_0) < 1$$

Asymptotic stability \Rightarrow that $\{y_k\}_{k\geq 1}$ converges as $k \to \infty$ to the limit profile

$$\begin{aligned} x_{\infty}(p+1) &= \left(A + B_0(I - D_0)^{-1}C\right) x_{\infty}(p) + Bu_{\infty}(p) \\ y_{\infty}(p) &= (I - D_0)^{-1}Cx_{\infty}(p), \quad x_{\infty}(0) = d_{\infty} \end{aligned}$$

Stability of Linear Repetitive Processes

A somewhat surprising result — independent of the state updating dynamics!!

Resulting limit profile

$$\begin{aligned} x_{\infty}(p+1) &= \left(A + B_0(I - D_0)^{-1}C\right) x_{\infty}(p) + Bu_{\infty}(p) \\ y_{\infty}(p) &= (I - D_0)^{-1}Cx_{\infty}(p), \quad x_{\infty}(0) = d_{\infty} \end{aligned}$$

This is a standard or 1-D linear system — 'nice'(?) in terms of control or not?

Stability of Linear Repetitive Processes

In fact, asymptotic stability does not guarantee 'acceptable' limit profile dynamics.

Example

$$\begin{aligned} x_{k+1}(p+1) &= -0.5x_{k+1}(p) + u_{k+1}(p) + (0.5+\beta)y_k(p) \\ y_{k+1}(p) &= x_{k+1}(p), \ x_{k+1}(0) = 0, \ 0 \le p \le \alpha - 1 \end{aligned}$$

This process is asymptotically stable but the resulting limit profile over $0 \leq p \leq \alpha - 1$

$$y_{\infty}(p+1) = \beta y_{\infty}(p) + u_{\infty}(p)$$

is unstable in 1D sense if $|\beta| \ge 1$. ('Growth' term in the the along the pass direction.)

10/29

Stability along the pass

The problem here is the finite pass length. Stability along the pass considers the case as $\alpha \to \infty$

Theorem

Suppose that the pair $\{A, B_0\}$ is controllable and the pair $\{C, A\}$ is observable. Then the discrete linear repetitive process is stable along the pass if, and only if,

- **1.** $\rho(D_0) < 1$
- **2.** $\rho(A) < 1$
- 3. all eigenvalues of $G(z) = C(zI A)^{-1}B_0 + D_0$ have modulus strictly less than unity $\forall |z| = 1$

Note for the simple example above r(A) < 1 is only a necessary condition — we also need the third condition (physical meaning (differential case) each frequency component of the initial pass profile must be attenuated from pass-to-pass and not just d.c. content (asymptotic stability)).

For dynamic boundary conditions — asymptotic stability condition becomes much more complex. Possible to test in discrete case by a 1-D equivalent model — this is not the same as just applying 1-D linear systems theory — in the differential case – still a headache!!!

12/29

Stability along the pass

Unstable along the pass process

Stable along the pass process

20

Lemma

Assume that there exist matrices $P_1 \succ 0$ and $P_2 \succ 0$ of compatible dimensions such that LMI

$$\begin{bmatrix} -P_2 & P_2C & P_2D_0 \\ C^T P_2 & A^T P_1 + P_1A & P_1B_0 \\ D_0^T P_2 & B_0^T P_1 & -P_2 \end{bmatrix} \prec 0$$

or

$$\begin{bmatrix} -P_1 & 0 & P_1A & P_1B_0 \\ 0 & -P_2 & P_2C & P_2D_0 \\ A^TP_1 & C^TP_2 & -P_1 & 0 \\ B_0^TP_1 & D_0^TP_2 & 0 & -P_2 \end{bmatrix} < 0$$

hold, then the differential LRP (resp. the discrete LRP) is stable along the pass.

14/29

Towards a better result

- the Lyapunov matrices (P₁ and P₂) are not separated from the process matrices;
- there are no slack matrix variables which can introduce an additional flexibility in obtaining a solution;

Notation

 δ stands for the derivation or shifting operator (depending on the differential or purely discrete case)

$$\mathcal{A} = \begin{bmatrix} A & B_0 \\ C & D_0 \end{bmatrix} \text{ and } \mathcal{B} = \begin{bmatrix} B \\ D \end{bmatrix}$$
$$sym(X) = X + X^T$$

Theorem

Assume that there exist matrices $Y_1 \succ 0, \, Y_2 \succ 0$ and G of compatible dimensions such that

$$\Upsilon + \operatorname{sym}\left(\left[\begin{array}{c}\mathcal{A}\\-I\end{array}\right]G\mathcal{I}\right) \prec 0$$

where

$$\Upsilon = \begin{bmatrix} 0 & 0 & Y_1 & 0 \\ 0 & -Y_2 & 0 & 0 \\ Y_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y_2 \end{bmatrix} \quad \text{or} \quad \Upsilon = \begin{bmatrix} -Y_1 & 0 & 0 & 0 \\ 0 & -Y_2 & 0 & 0 \\ 0 & 0 & Y_1 & 0 \\ 0 & 0 & 0 & Y_2 \end{bmatrix}$$
$$\pounds = \begin{bmatrix} I & 0 & I & 0 \\ 0 & 0 & 0 & I \end{bmatrix} \quad \text{or} \quad \pounds = \begin{bmatrix} 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{bmatrix}$$

then a differential LRP (resp. the discrete LRP) is stable along the pass

1. Improved results are provided without introducing any additional degree of conservativeness

17/29

- 1. Improved results are provided without introducing any additional degree of conservativeness
- 2. Improved results are obtained by mean of the matrix elimination procedure

- 1. Improved results are provided without introducing any additional degree of conservativeness
- 2. Improved results are obtained by mean of the matrix elimination procedure
- 3. The matrix slack variable *G* has full form (not block diagonal) and introduces extra degree of freedom

17/29

- 1. Improved results are provided without introducing any additional degree of conservativeness
- 2. Improved results are obtained by mean of the matrix elimination procedure
- 3. The matrix slack variable *G* has full form (not block diagonal) and introduces extra degree of freedom
- 4. The matrix *G* is particularly useful in the robust context to introduce parameter-dependent Lyapunov functions.

17/29

A static feedback controller case

The control law

$$u_{k+1}(p) = \begin{bmatrix} K_1 & K_2 \end{bmatrix} \begin{bmatrix} x_{k+1}(p) \\ y_k(p) \end{bmatrix}$$

where

• K_1 and K_2 are matrices to be designed.

then the closed-loop process is

$$\delta \xi_k = \mathcal{A}_c \xi_k$$

where

$$A_c = A + BK$$

18/29

Theorem

Suppose that an LRP is subjected to the static control law then the resulting closed-loop process is stable along the pass if there exist matrices $Y_1 > 0$, $Y_2 > 0$, G and L such that

$$\Upsilon + \operatorname{sym}\left(\left(\left[\begin{array}{c}\mathcal{A}\\-I\end{array}\right]G + \left[\begin{array}{c}\mathcal{B}\\0\end{array}\right]L\right)L\right) \prec 0$$

In this case, the controller matrix is given by

$$K = LG^{-1}$$

Robust stability

Remarks:

- unlike previous results where matrices K₁ and K₂ are directly deduced from dual Lyapunov matrices Y₁ and Y₂, matrix K is here computed with L and G
- this can bring additional flexibility, reducing conservativeness, especially for the uncertain process case
- matrix G allows us to introduce parameter-dependent Lyapunov functions when the model is itself parameter-dependent

Robust stability

Remarks:

- unlike previous results where matrices K₁ and K₂ are directly deduced from dual Lyapunov matrices Y₁ and Y₂, matrix K is here computed with L and G
- this can bring additional flexibility, reducing conservativeness, especially for the uncertain process case
- matrix G allows us to introduce parameter-dependent Lyapunov functions when the model is itself parameter-dependent

Indeed, assume that a process is actually subject to uncertainty such that it can be written

$$\delta\xi_{k+1} = \mathbb{A}\xi_k + \mathbb{B}u_{k+1}$$

where

$$\begin{bmatrix} \mathbb{A} & \mathbb{B} \end{bmatrix} = \begin{bmatrix} \mathcal{A} & \mathcal{B} \end{bmatrix} + \begin{bmatrix} \Delta_{\mathcal{A}} & \Delta_{\mathcal{B}} \end{bmatrix}.$$

Uncertainty structure

Furthermore, it is assumed that matrices \mathcal{A} and \mathcal{B} dependent on a real parameter vector θ with a polytopic dependency:

$$\begin{bmatrix} \mathcal{A} & \mathcal{B} \end{bmatrix} = \begin{bmatrix} \mathcal{A}(\theta) & \mathcal{B}(\theta) \end{bmatrix} = \sum_{i=1}^{N} \theta_i \begin{bmatrix} \mathcal{A}_i & \mathcal{B}_i \end{bmatrix}, \quad \theta \in \Theta$$

where

$$\Theta = \left\{ \theta = \left[\begin{array}{c} \theta_1 \\ \vdots \\ \theta_N \end{array} \right] : \theta_i \ge 0, \ \sum_{i=1}^N \theta_1 = 1 \right\}$$

It means that the various matrices $[A_i \ B_i]$, which are known, are the vertices of a polytope in which the actual matrix $[A \ B]$ lies.

Uncertainty structure

Moreover, the additive uncertainties are assumed to be

$$\begin{array}{ll} \Delta_{A} = H_{A} \mathcal{F}_{A} E_{A}, & ||\mathcal{F}_{A}||_{2} \leq \rho_{A}, \\ \Delta_{B} = H_{B} \mathcal{F}_{B} E_{B}, & ||\mathcal{F}_{B}||_{2} \leq \rho_{B}. \end{array}$$

- H_A , H_B , E_A and E_B give some desired structure to the additive uncertainty
- \mathcal{F}_A and \mathcal{F}_B are uncertain matrices that belong to some balls of matrices whose respective radii are ρ_A and ρ_B .

To make this description even more general, the matrices H_A , H_B , E_A and E_B are also subjected to a polytopic dependency:

$$\begin{bmatrix} H_{A} & H_{B} & E_{A}^{T} & E_{B}^{T} \end{bmatrix} = \begin{bmatrix} H_{A}(\theta) & H_{B}(\theta) & E_{A}^{T}(\theta) & E_{B}^{T}(\theta) \end{bmatrix}$$
$$= \sum_{i=1}^{N} \theta_{i} \begin{bmatrix} H_{A_{i}} & H_{B_{i}} & E_{A_{i}}^{T} & E_{B_{i}}^{T} \end{bmatrix}, \ \theta \in \Theta.$$

Robust stabilization

23/29

In this case, the uncertain closed-loop model becomes

$$\delta \xi_k = (\mathcal{A}_c + \Delta_A + \Delta_B K) \xi_k = \mathbb{A}_c(\theta) \xi_k,$$

where $A_c = A + BK$ inherits from the polytopic structure of A and B. It is however false to claim that A_c is polytopic.

In this case, the uncertain closed-loop model becomes

$$\delta \xi_k = (\mathcal{A}_c + \Delta_A + \Delta_B K) \xi_k = \mathbb{A}_c(\theta) \xi_k,$$

where $A_c = A + BK$ inherits from the polytopic structure of A and B. It is however false to claim that A_c is polytopic.

Definition

The uncertain closed-loop repetitive process is robustly stable along the pass if and only if it is stable along a pass for any value of θ in Θ and for any matrices \mathcal{F}_A and \mathcal{F}_B such that $||\mathcal{F}_A||_2 \leq \rho_A$, $||\mathcal{F}_B||_2 \leq \rho_B$.

Theorem

Suppose that an LRP is subjected to the static control law then the resulting closed-loop process is stable along if there exist matrices $Y_{1_i} > 0$, $Y_{2_i} > 0$, i = 1, ..., N, as well as matrices G and L such that

$$M_{i} = \begin{bmatrix} Q_{i} & \mathcal{I}^{T} \begin{bmatrix} G^{T} E_{A_{i}}^{T} & 0 \\ 0 & \mathcal{L}^{T} E_{B_{i}}^{T} \end{bmatrix} & \begin{bmatrix} H_{A_{i}} & H_{B_{i}} \\ 0 & 0 \end{bmatrix} \\ \hline (\star) & \begin{bmatrix} -\rho_{A}^{-1} & 0 \\ 0 & -\rho_{B}^{-1} \end{bmatrix} & 0 \\ \hline (\star) & (\star) & \begin{bmatrix} -\rho_{A}^{-1} & 0 \\ 0 & -\rho_{B}^{-1} \end{bmatrix} \end{bmatrix} \prec 0$$
$$\forall i \in \{1, \dots, N\}$$

where

$$Q_{i} = \Upsilon_{i} + \operatorname{sym}\left(\left[\begin{array}{c}\mathcal{A}_{i}G + \mathcal{B}_{i}L\\-I\end{array}\right] I\right)$$

with Υ_i defined by indexing Y_1 and Y_2 in Υ . In this case, the matrix K is given by $K = LG^{-1}$.

Robust stabilization

Here, it has to be noticed that dual Lyapunov matrices involved in Υ and thus in Q also depend on θ in a polytopic way, i.e.

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} Y_1(\theta) \\ Y_2(\theta) \end{bmatrix} = \sum_{i=1}^N \theta_i \begin{bmatrix} Y_{1_i} \\ Y_{2_i} \end{bmatrix}, \quad \theta \in \Theta$$

Finally, the convex programming problem that consists in minimizing the objective function can be solved

$$\mathcal{J} = \alpha_A \rho_A^{-1} + \alpha_B \rho_B^{-1}$$

Numerical example (part1/3)

Consider the differential LRP represented by

$$\begin{bmatrix} A_1 & B_1 \end{bmatrix} = \begin{bmatrix} 0.1086 & 0.1538 & 0.0908 & 1.7362 \\ 0.0601 & 0.0694 & 0.0823 & 0.3614 \\ 0.0598 & 0.0084 & 0.1438 & 1.9599 \end{bmatrix},$$
$$\begin{bmatrix} A_2 & B_2 \end{bmatrix} = \begin{bmatrix} 1.0860 & 1.5380 & 0.9084 & 1.9292 \\ 0.6008 & 0.6944 & 0.8235 & 0.4016 \\ 0.5982 & 0.0837 & 1.4385 & 2.1777 \end{bmatrix},$$
$$\begin{bmatrix} A_3 & B_3 \end{bmatrix} = \begin{bmatrix} 1.3032 & 1.8457 & 1.0901 & 2.3150 \\ 0.7210 & 0.8333 & 0.9881 & 0.4819 \\ 0.7178 & 0.1004 & 1.7261 & 2.6132 \end{bmatrix},$$

Numerical example (part2/3)

Norm-boud uncertainty is modelled with

$$\begin{bmatrix} H_{A_1} & H_{A_2} & H_{A_3} \end{bmatrix} = \begin{bmatrix} 0.0757 & 0.0773 & 0.0287 \\ 0.0609 & 0.0573 & 0.0752 \\ 0.0967 & 0.0450 & 0.0094 \end{bmatrix},$$
$$\begin{bmatrix} H_{B_1} & H_{B_2} & H_{B_3} \end{bmatrix} = \begin{bmatrix} 0.0107 & 0.0581 & 0.0360 \\ 0.0735 & 0.0299 & 0.0718 \\ 0.0355 & 0.0714 & 0.0995 \end{bmatrix},$$
$$E_{A_1} = \begin{bmatrix} 0.0041 & 0.0329 & 0.0709 \end{bmatrix}, E_{B_1} = 0.0161$$
$$E_{A_2} = \begin{bmatrix} 0.0860 & 0.0501 & 0.0995 \end{bmatrix}, E_{B_2} = 0.0159$$
$$E_{A_3} = \begin{bmatrix} 0.0429 & 0.0267 & 0.0473 \end{bmatrix}, E_{B_3} = 0.0268.$$

Numerical example (part3/3)

Design procedure for $\rho_A = 0.1$ and $\rho_B = 0.1$ gives the solution as

$$G = \begin{bmatrix} -397.2800 & -159.6062 & 10.8490 \\ -560.0837 & -237.1113 & -2.5830 \\ 198.1517 & 79.5747 & -4.1740 \end{bmatrix},$$
$$L = \begin{bmatrix} -0.1723 & 0.2542 & -0.1162 \end{bmatrix}$$

and the corresponding controller matrix is

$$K = \begin{bmatrix} -0.1961 & -0.0255 \end{bmatrix} -0.4661 \end{bmatrix}$$

Conclusions

- New results on the relatively open problem of robust control of linear repetitive processes have been developed
- Separation of the Lyapunov matrices from the process matrices has been presented - LMI conditions based on parameter dependent Lyapunov functions can be derived
- The obtained result can be extended to the case of a quite general affecting uncertainty affecting the model, namely the polytopic normbounded uncertainty.
- Uncertainty is present on both the state dynamics and the pass profile updating equations of the state space model.

