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Introduction Theory Perspectives

Empirical Modale Decomposition?

Idea– any signal x(t) can be seen as the superposition of
many rapid and slow oscillations (Huang and al)

Purposes– Extract this oscillations by decomposing:

x(t) =
∑

k

ck(t) + r(t),

ck(t) intrinsic modes functions (IMFs) and r(t) is a tendency

The IMFs– are function verifying:

1 Local symmetry, they have a vanishing local mean
2 oscillations: the maxima (resp. minima) are strictly positives

(resp. negatives)
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Introduction Theory Perspectives

Why doing an EMD?

Avoid the limits of the usual time-frequency analysis Fourier
and Wavelets, Huang and al 1998

More suitable for non stationary and non linear systems

It has the advantage to not use an a priori bases, so more
freedom.

Finally in term in Hilbert transform and the notion of
instantaneous frequencies

ck(t) = Re

{

ak(t) exp{

∫

2πfk(t)dt}

}

, fk(t) make sense

x(t) = Re

{

∑

k

ak(t) exp{

∫

2πfk(t)dt}

}
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Introduction Theory Perspectives

How to implement the EMD?

The sifting algorithm:

1 Find local extrema of x(t).

2 Calculate the upper enveloppe M(t) and the lower envelope
m(t) (using a cubic splines).

3 Update the signal, x(t)← x(t)− M(t)+m(t)
2 .

4 Repeat 1, 2 et 3 until having an IMF c(t).

5 Substrat the IMF obtained in 4, x(t)← x(t)− c(t).

6 Repeat 1-5 until having a tendency r(t) (a curve having at
most one extremum)

Azzaoui, Miraoui, Snoussi, Duchêne Empirical Modal Decomposition...



Introduction Theory Perspectives

Illustration of the sifting algorithm
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Azzaoui, Miraoui, Snoussi, Duchêne Empirical Modal Decomposition...



Introduction Theory Perspectives

Illustration of the sifting algorithm

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

time

x(
t)
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Illustration of the sifting algorithm
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Illustration of the sifting algorithm
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Figure: and so on...
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Introduction Theory Perspectives

Limitations of the EMD

Although EMD has a great success in applications it has some
limitations:

Problems linked to the numerical treatments

Determination of a stoping test for the sifting algorithm
Instability of the algorithm
Sensitivity to perturbations and sampling

Problems linked to the conception of the EMD

Ambiguous definition of IMFs; local symmetry
No theoretical formulation
Not easy to generalize to vectorial signals (Flandrin and al
2007)
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Azzaoui, Miraoui, Snoussi, Duchêne Empirical Modal Decomposition...



Introduction Theory Perspectives

Elementary Intrinsic Mode Functions (EIMF): the 1D case

A regular function x(t) is an EIMF if it verifies:

1 The function x(t) has many inflexion points which are also
zero-crossing (except eventually the end points of the signal).

2 For every three consecutive inflexions, the curve of x(t) is
symmetric with respect to the central point

=⇒ An EIMF is an IMF in Huang’s sense.

A tendency is a function having at most one inflexion point
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Introduction Theory Perspectives

A simple illustration of our idea in 1D case

0
a ba+b

2

x(a)

x(b)

The idea is to search for a function T (t) such that
x(t)− T (t) = c(t) be an EIMF on [a, b] and it verifies the central
symmetry with respect to (a+b

2 , 0).
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Introduction Theory Perspectives

A first local formulation

Lemma
Let x(t) a regular function having tow different type of convexity
on [a, b]. Then it may be decomposed as x(t) = c(t) + T (t) and,

c(t) =
x(t)− x(a + b − t)

2
− ϕ(2t − (a + b)),

where ϕ is any odd function linked to T by the equality:

ϕ(2t − (a + b)) =
T (t)− T (a + b − t)

2

=⇒ There exist many couples (ϕ,T ) which are solution of a such
problem.
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Introduction Theory Perspectives

Uniqueness of the decomposition

Lemma
Let x(t) be a signal as in last lemma, then the decomposition
x(t) = c(t) + T (t) is unique in the sense that:
ϕ is the only one such that the corresponding T did not change its
convexity type (only convexe or only concave) on [a, b].

The fact that T do not change the convexity type on [a, b]
implies a less oscillation with respect to the extracted EIMF
c(t) (less inflexion points)

This is the key idea of our algorithms convergence
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Introduction Theory Perspectives

Inline extraction in a general signal

Theorem
Let x(t) be a regular function on [A,B ] and having m = 2ℓ− 1
inflexion points I1(a1, x(a1)), . . . , Im(am, x(am)). we denote
I0(A, x(A)) and Im+1(B , x(B)). In this cas there exist , a set of
odd functions (ϕ1, . . . , ϕℓ) such that x(t) = c(t) + T (t) where

c(t) =

ℓ
∑

i=1

x(t)− x(a2i−1 + a2i+1 − t)

2
− ϕi (2t − (a2i−1 + a2i+1))

and T is a function having at most ℓ inflexion points.
=⇒ the convergence But how to determine the ϕi ’s ?
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Introduction Theory Perspectives

A simple method: interpolation like

The purpose is to approach ϕi on [a2i−1, a2i+1] by a
polynomial,

ϕi (t) = αi (t−mi)+βi (t−mi )
3+γi (t−mi)

5, mi =
a2i−1 + a2i+1

2

Let us denote hi =
a2i+1−a2i−1

2 and Di =
x(a2i+1)−x(a2i−1)

a2i+1−a2i−1
, we

will have:

Porp. EIMF: αi + βi (hi )
2 + γi (hi )

4 = Di

Continuity of derivatives in a2i+1 gives the equations:

ϕ′ : αi+1 + 3βi+1(hi+1)
2 + 5γi+1(hi+1)

4 = αi + 3βi (hi )
2 + 5γi (hi )

4

ϕ′′ : 3βi+1(hi+1) + 10γi+1(hi+1)
3 = 3βi (hi ) + 10γi (hi )

3
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Introduction Theory Perspectives

Advanced method: piecewise polynomial

On a local interval [a, b] we observe x(t) at instants
t0, t1, . . . , tn, tn+1 = a+b

2 et
a + b − tn, a + b − tn−1, . . . , a + b − t0 = b

in the left side, between successive instants [ti , ti+1] we define
the polynomials,

Sℓ

i (t) = αi
0+α

i
1(2t−(a+b))+αi

2(2t−(a+b))2+αi
3(2t−(a+b))3,

In the right side [a + b − ti+1, a + b − ti ],

S r
i (t) = βi

0+β
i
1(2t−(a+b))+βi

2(2t−(a+b))2+βi
3(2t−(a+b))3

=⇒ The purpose is to find α, β.
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Introduction Theory Perspectives

Advanced method: piecewise polynomials

Using the fact that for t = (ti , i = 1, . . . , n)

Sℓ

i (t) + S r
i (a + b − t) = x(t) + x(a + b − t)

we have:

Ai
0+Ai

1(2t−(a+b))+Ai
2(2t−(a+b))2+Ai

3(2t−(a+b))3 = M(t)

where M(t) = x(t) + x(a + b − t) and

{

Ai
0 = αi

0 + βi
0 ; Ai

2 = αi
2 + βi

2

Ai
1 = αi

1 − β
i
1 ; Ai

3 = αi
3 − β

i
3

The coefficients Ai
0,A

i
1,A

i
2 and Ai

3 are determined using a
similar technic as in cubic splines
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Introduction Theory Perspectives

Advanced method: piecewise polynomial

By symmetry, αi
0 = βi

0 =
Ai

0

2
; αi

2 = βi
2 =

Ai
2

2
We denote Xi = 2ti − (a + b) and compute,

Bi+1 =
(Ai

2 − Ai+1
2 )

4
(Xi+1)−

(Ai
0 − Ai+1

0 )

4(Xi+1)

we deduce the coefficients α, β (using continuity and
derivatives),

αi
1 = α0

1 +

i
∑

j=1

Aj ; αi
3 = α0

3 +

i
∑

j=1

Bj

βi
1 = αi

1 − Ai
1 ; βi

3 = αi
3 − Ai

3
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Introduction Theory Perspectives

Advanced method: piecewise polynomial

We compute

M1 = min
i



Ai
2 +

βi
2

3(Xi+1)
−

i
∑

j=1

Bj



 ; M2 = max
i





−αi
2

3(Xi+1)
−

i
∑

j=1

Bj





M3 = max
i



Ai
2 +

βi
2

3(Xi+1)
−

i
∑

j=1

Bj



 ; M4 = min
i





−αi
2

3(Xi+1)
−

i
∑

j=1

Bj





if x(a+b
2 ) ≤ x(a)+x(b)

2 (convexity) we take,

M1 ≤ α
3
0 ≤M2

x(a+b
2 ) ≤ x(a)+x(b)

2 (concavity) we take

M3 ≤ α
3
0 ≤M4
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Illustration of the algorithm in action
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Illustration of the algorithm in action
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Figure: We extract the first EIMF in the same time we ensure that T (t)
is slower than c(t)

Azzaoui, Miraoui, Snoussi, Duchêne Empirical Modal Decomposition...



Introduction Theory Perspectives

Outlines

1 Introduction and preliminaries

2 Theoretical formulation of the EMD
The undimentional case
The vectorial bivariate case

3 Perspectives and further issues
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Introduction Theory Perspectives

Elementary Intrinsic Mode Functions (EIMF) the 2D case

A bivariate EIMF is a bivariate function having one of the following
shapes:

Rotating EIMFs: they are non-planar curves that are turning
around the time axis (they have a spiral shape) in addition
they are locally axially symmetric.

Oscillating EIMFs: it is a planar curve having many changes
of the convexity and have a ”local symmetry” as well. In their
containing plan, they can be seen as univariate EIMFs.

Tendencies: they are planar or non planar curves which have
no inflexion.
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A simple illustration: the 2D case
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For
−→
f (t) = (x(t), y(t)), the idea is to search for

−→
T (t) = (T1(t),T2(t)) such that

−→
f (t)−

−→
T (t) = −→c (t) be a

bivariate EIMF on [a, b] and it verifies the axial symmetry with
respect to the line passing by (a+b

2 , 0, 0) and parallels to a

reference
−→
k .
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Introduction Theory Perspectives

The existence, uniqueness and convergence

As in univariate signals we show that regular function
−→
f (t) may

be locally decomposed on [a, b] as:
−→
f (t) = −→c (t) +

−→
T (t) where:

c1(t) =
x(t)− x(a + b − t)

2
− ϕ(2t − (a + b))

c2(t) =
y(t) + y(a + b − t)

2
− ψ(2t − (a + b))

ϕ is odd and ψ is even and are linked to
−→
T (t).

We also show that (−→c (t),
−→
T (t)) is the unique such that −→c (t) is

an EIMF and
−→
T (t) do not change the convexity on [a, b]
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Inline extraction in a general bivariate signal

Theorem
Let
−→
f (t) = (x(t), y(t)) be a regular function having m = 2ℓ− 1

inflexion points at a1, . . . , am. There exist, a set of odd functions
(ϕ1, . . . , ϕℓ) and a set of even functions (ψ1, . . . , ψℓ) such that
−→
f (t) = −→c (t) +

−→
T (t) where

c1(t) =

ℓ
∑

i=1

x(t)− x(a2i−1 + a2i+1 − t)

2
− ϕi (2t − (a2i−1 + a2i+1))

c2(t) =

ℓ
∑

i=1

y(t) + y(a2i−1 + a2i+1 − t)

2
− ψi (2t − (a2i−1 + a2i+1))

and
−→
T is a function having at most ℓ inflexion points.
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The main algorithms: characteristic points

Algorithm 1: Detection of characteristic points

Input: Bivariate signal
−→
f (ti ) = (x(ti ), y(ti )) observed at ti , i = 1, . . . , n

- Calculate first and second derivatives of x(t), y(t)
foreach i = 1 . . . n do

- Calculate the vector product

→

U=





1
x ′(ti )
y ′(ti )



 ∧





0
x ′′(ti )
y ′′(ti )





- Calculate the dot product Cu(t) =
→

U .
→

k
end

Find the zeros crossing of Cu(t), θ1, . . . , θ2m−1

Take characteristic points as ai = θ2i−1 for i = 1, . . . ,m
Output: Characteristic points a1, . . . am
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Main algorithms: The inline extraction

ϕi (t) = α1,i t + α2,i t
3 + α3,i t

5,

ψi(t) = β1,i + β2,i t
2 + β3,i t

4.

The coefficients in α and β are obtained by a piecewise spline like
procedure as in the univariate case.

Algorithm 2: Extraction of rapidly rotating and rapidly oscillating
IMFs

Input: Bivariate signal
−→
f (ti ) = (x(ti ), y(ti )) observed at ti , i = 1 : n

Find characteristic points a1, . . . am using algorithm1
foreach i = 1 . . .m − 1 do

- Find coefficients of ϕi and ψi on [ai , ai+1]
- Calculate c1 and c2 as given in the decomposition theorem.

end

Output: Elementary IMFs −→c (t) = (c1(t), c2(t))
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A simulated example
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A simulated example
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Perspectives and further issues

Study the sensitivity to sampling and perturbations

Generalizing the technique to higher order vectorial and
multivariate signals

Use the discrete convexity discrete geometry concepts

Study of the hidden scales problems
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