Empirical Mode Decomposition for vectorial bi-dimensional signals

N. Azzaoui, A. Miraoui, H. Snoussi and J. Duchêne

Technology University of Troyes
Charles Delaunay Institute, FRE CNRS 2848

Laboratory (LM2S)

6th International Workshop on Multidimensional (nD) Systems

Outlines

1 Introduction and preliminaries

2 Theoretical formulation of the EMD - The undimentional case - The vectorial bivariate case

3 Perspectives and further issues

Outlines

1 Introduction and preliminaries

2 Theoretical formulation of the EMD

- The undimentional case

■ The vectorial bivariate case

3 Perspectives and further issues

Outlines

1 Introduction and preliminaries

2 Theoretical formulation of the EMD

- The undimentional case
- The vectorial bivariate case

3 Perspectives and further issues

Empirical Modale Decomposition?

- Idea- any signal $x(t)$ can be seen as the superposition of many rapid and slow oscillations (Huang and al)
- Purposes- Extract this oscillations by decomposing:

$$
x(t)=\sum_{k} c_{k}(t)+r(t)
$$

$c_{k}(t)$ intrinsic modes functions (IMFs) and $r(t)$ is a tendency

- The IMFs- are function verifying:

1 Local symmetry, they have a vanishing local mean
2 oscillations: the maxima (resp. minima) are strictly positives (resp. negatives)

Why doing an EMD?

■ Avoid the limits of the usual time-frequency analysis Fourier and Wavelets, Huang and al 1998
■ More suitable for non stationary and non linear systems
■ It has the advantage to not use an a priori bases, so more freedom.

- Finally in term in Hilbert transform and the notion of instantaneous frequencies

$$
\begin{gathered}
c_{k}(t)=\operatorname{Re}\left\{a_{k}(t) \exp \left\{\jmath \int 2 \pi f_{k}(t) d t\right\}\right\}, f_{k}(t) \text { make sense } \\
x(t)=\operatorname{Re}\left\{\sum_{k} a_{k}(t) \exp \left\{\jmath \int 2 \pi f_{k}(t) d t\right\}\right\}
\end{gathered}
$$

How to implement the EMD?

The sifting algorithm:
1 Find local extrema of $x(t)$.
2 Calculate the upper enveloppe $M(t)$ and the lower envelope $m(t)$ (using a cubic splines).
3 Update the signal, $x(t) \leftarrow x(t)-\frac{M(t)+m(t)}{2}$.
4 Repeat 1,2 et 3 until having an IMF $c(t)$.
5 Substrat the IMF obtained in $4, x(t) \leftarrow x(t)-c(t)$.
6 Repeat 1-5 until having a tendency $r(t)$ (a curve having at most one extremum)

Illustration of the sifting algorithm

Illustration of the sifting algorithm

Illustration of the sifting algorithm

Figure: and so on...

Limitations of the EMD

Although EMD has a great success in applications it has some limitations:

■ Problems linked to the numerical treatments
■ Determination of a stoping test for the sifting algorithm

- Instability of the algorithm
- Sensitivity to perturbations and sampling

■ Problems linked to the conception of the EMD

- Ambiguous definition of IMFs; local symmetry
- No theoretical formulation

■ Not easy to generalize to vectorial signals (Flandrin and al 2007)

Outlines

1 Introduction and preliminaries

2 Theoretical formulation of the EMD

- The undimentional case
- The vectorial bivariate case

3 Perspectives and further issues

Elementary Intrinsic Mode Functions (EIMF): the 1D case

A regular function $x(t)$ is an EIMF if it verifies:
1 The function $x(t)$ has many inflexion points which are also zero-crossing (except eventually the end points of the signal).
2 For every three consecutive inflexions, the curve of $x(t)$ is symmetric with respect to the central point
\Longrightarrow An EIMF is an IMF in Huang's sense.

- A tendency is a function having at most one inflexion point

A simple illustration of our idea in 1D case

The idea is to search for a function $T(t)$ such that $x(t)-T(t)=c(t)$ be an EIMF on $[a, b]$ and it verifies the central symmetry with respect to $\left(\frac{a+b}{2}, 0\right)$.

A first local formulation

Lemma

Let $x(t)$ a regular function having tow different type of convexity on $[a, b]$. Then it may be decomposed as $x(t)=c(t)+T(t)$ and,

$$
c(t)=\frac{x(t)-x(a+b-t)}{2}-\varphi(2 t-(a+b))
$$

where φ is any odd function linked to T by the equality:

$$
\varphi(2 t-(a+b))=\frac{T(t)-T(a+b-t)}{2}
$$

\Longrightarrow There exist many couples (φ, T) which are solution of a such problem.

Uniqueness of the decomposition

Lemma

Let $x(t)$ be a signal as in last lemma, then the decomposition $x(t)=c(t)+T(t)$ is unique in the sense that:
φ is the only one such that the corresponding T did not change its convexity type (only convexe or only concave) on $[a, b]$.

- The fact that T do not change the convexity type on [a, b] implies a less oscillation with respect to the extracted EIMF $c(t)$ (less inflexion points)
■ This is the key idea of our algorithms convergence

Inline extraction in a general signal

Theorem

Let $x(t)$ be a regular function on $[A, B]$ and having $m=2 \ell-1$ inflexion points $I_{1}\left(a_{1}, x\left(a_{1}\right)\right), \ldots, I_{m}\left(a_{m}, x\left(a_{m}\right)\right)$. we denote $I_{0}(A, x(A))$ and $I_{m+1}(B, x(B))$. In this cas there exist, a set of odd functions $\left(\varphi_{1}, \ldots, \varphi_{\ell}\right)$ such that $x(t)=c(t)+T(t)$ where

$$
c(t)=\sum_{i=1}^{\ell} \frac{x(t)-x\left(a_{2 i-1}+a_{2 i+1}-t\right)}{2}-\varphi_{i}\left(2 t-\left(a_{2 i-1}+a_{2 i+1}\right)\right)
$$

and T is a function having at most ℓ inflexion points.
\Longrightarrow the convergence But how to determine the φ_{i} 's ?

A simple method: interpolation like

■ The purpose is to approach φ_{i} on $\left[a_{2 i-1}, a_{2 i+1}\right]$ by a polynomial,

$$
\varphi_{i}(t)=\alpha_{i}\left(t-m_{i}\right)+\beta_{i}\left(t-m_{i}\right)^{3}+\gamma_{i}\left(t-m_{i}\right)^{5}, m_{i}=\frac{a_{2 i-1}+a_{2 i+1}}{2}
$$

■ Let us denote $h_{i}=\frac{a_{2 i+1}-a_{2 i-1}}{2}$ and $D_{i}=\frac{x\left(a_{2 i+1}\right)-x\left(a_{2 i-1}\right)}{a_{2 i+1}-a_{2 i}-1}$, we will have:

$$
\text { Porp. EIMF: } \quad \alpha_{i}+\beta_{i}\left(h_{i}\right)^{2}+\gamma_{i}\left(h_{i}\right)^{4}=D_{i}
$$

■ Continuity of derivatives in $a_{2 i+1}$ gives the equations:

$$
\begin{aligned}
& \varphi^{\prime}: \alpha_{i+1}+3 \beta_{i+1}\left(h_{i+1}\right)^{2}+5 \gamma_{i+1}\left(h_{i+1}\right)^{4}=\alpha_{i}+3 \beta_{i}\left(h_{i}\right)^{2}+5 \gamma_{i}\left(h_{i}\right)^{4} \\
& \varphi^{\prime \prime}: 3 \beta_{i+1}\left(h_{i+1}\right)+10 \gamma_{i+1}\left(h_{i+1}\right)^{3}=3 \beta_{i}\left(h_{i}\right)+10 \gamma_{i}\left(h_{i}\right)^{3}
\end{aligned}
$$

Advanced method: piecewise polynomial

■ On a local interval $[a, b]$ we observe $x(t)$ at instants $t_{0}, t_{1}, \ldots, t_{n}, t_{n+1}=\frac{a+b}{2}$ et
$a+b-t_{n}, a+b-t_{n-1}, \ldots, a+b-t_{0}=b$
■ in the left side, between successive instants $\left[t_{i}, t_{i+1}\right]$ we define the polynomials,

$$
S_{i}^{\ell}(t)=\alpha_{0}^{i}+\alpha_{1}^{i}(2 t-(a+b))+\alpha_{2}^{i}(2 t-(a+b))^{2}+\alpha_{3}^{i}(2 t-(a+b))^{3},
$$

$■$ In the right side $\left[a+b-t_{i+1}, a+b-t_{i}\right]$,
$S_{i}^{r}(t)=\beta_{0}^{i}+\beta_{1}^{i}(2 t-(a+b))+\beta_{2}^{i}(2 t-(a+b))^{2}+\beta_{3}^{i}(2 t-(a+b))^{3}$
\Longrightarrow The purpose is to find α, β.

Advanced method: piecewise polynomials

■ Using the fact that for $t=\left(t_{i}, i=1, \ldots, n\right)$

$$
S_{i}^{\ell}(t)+S_{i}^{r}(a+b-t)=x(t)+x(a+b-t)
$$

we have:

$$
\begin{aligned}
& A_{0}^{i}+A_{1}^{i}(2 t-(a+b))+A_{2}^{i}(2 t-(a+b))^{2}+A_{3}^{i}(2 t-(a+b))^{3}=M(t) \\
& \text { where } M(t)=x(t)+x(a+b-t) \text { and } \\
& \begin{cases}A_{0}^{i}=\alpha_{0}^{i}+\beta_{0}^{i} & ; \quad A_{2}^{i}=\alpha_{2}^{i}+\beta_{2}^{i} \\
A_{1}^{i}=\alpha_{1}^{i}-\beta_{1}^{i} & ; \quad A_{3}^{i}=\alpha_{3}^{i}-\beta_{3}^{i}\end{cases}
\end{aligned}
$$

- The coefficients $A_{0}^{i}, A_{1}^{i}, A_{2}^{i}$ and A_{3}^{i} are determined using a similar technic as in cubic splines

Advanced method: piecewise polynomial

■ By symmetry, $\alpha_{0}^{i}=\beta_{0}^{i}=\frac{A_{0}^{i}}{2} ; \alpha_{2}^{i}=\beta_{2}^{i}=\frac{A_{2}^{i}}{2}$
\square We denote $X_{i}=2 t_{i}-(a+b)$ and compute,

$$
B_{i+1}=\frac{\left(A_{2}^{i}-A_{2}^{i+1}\right)}{4}\left(X_{i+1}\right)-\frac{\left(A_{0}^{i}-A_{0}^{i+1}\right)}{4\left(X_{i+1}\right)}
$$

■ we deduce the coefficients α, β (using continuity and derivatives),

$$
\begin{array}{ll}
\alpha_{1}^{i}=\alpha_{1}^{0}+\sum_{j=1}^{i} A_{j} & ; \quad \alpha_{3}^{i}=\alpha_{3}^{0}+\sum_{j=1}^{i} B_{j} \\
\beta_{1}^{i}=\alpha_{1}^{i}-A_{1}^{i} & ; \quad \beta_{3}^{i}=\alpha_{3}^{i}-A_{3}^{i}
\end{array}
$$

Advanced method: piecewise polynomial

■ We compute

$$
\begin{aligned}
& \mathbb{M}_{1}=\min _{i}\left(A_{2}^{i}+\frac{\beta_{2}^{i}}{3\left(X_{i+1}\right)}-\sum_{j=1}^{i} B_{j}\right) ; \mathbb{M}_{2}=\max _{i}\left(\frac{-\alpha_{2}^{i}}{3\left(X_{i+1}\right)}-\sum_{j=1}^{i} B_{j}\right) \\
& \mathbb{M}_{3}=\max _{i}\left(A_{2}^{i}+\frac{\beta_{2}^{i}}{3\left(X_{i+1}\right)}-\sum_{j=1}^{i} B_{j}\right) ; \mathbb{M}_{4}=\min _{i}\left(\frac{-\alpha_{2}^{i}}{3\left(X_{i+1}\right)}-\sum_{j=1}^{i} B_{j}\right)
\end{aligned}
$$

- if $x\left(\frac{a+b}{2}\right) \leq \frac{x(a)+x(b)}{2}$ (convexity) we take,

$$
\mathbb{M}_{1} \leq \alpha_{0}^{3} \leq \mathbb{M}_{2}
$$

- $x\left(\frac{a+b}{2}\right) \leq \frac{x(a)+x(b)}{2}$ (concavity) we take

$$
\mathbb{M}_{3} \leq \alpha_{0}^{3} \leq \mathbb{M}_{4}
$$

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Illustration of the algorithm in action

Figure: We extract the first EIMF in the same time we ensure that $T(t)$ is slower than $c(t)$

Outlines

1 Introduction and preliminaries

2 Theoretical formulation of the EMD

- The undimentional case

■ The vectorial bivariate case

3 Perspectives and further issues

Elementary Intrinsic Mode Functions (EIMF) the 2D case

A bivariate EIMF is a bivariate function having one of the following shapes:

■ Rotating EIMFs: they are non-planar curves that are turning around the time axis (they have a spiral shape) in addition they are locally axially symmetric.
■ Oscillating EIMFs: it is a planar curve having many changes of the convexity and have a "local symmetry" as well. In their containing plan, they can be seen as univariate EIMFs.

- Tendencies: they are planar or non planar curves which have no inflexion.

A simple illustration: the 2D case

For $\vec{f}(t)=(x(t), y(t))$, the idea is to search for $\vec{T}(t)=\left(T_{1}(t), T_{2}(t)\right)$ such that $\vec{f}(t)-\vec{T}(t)=\vec{c}(t)$ be a bivariate EIMF on $[a, b]$ and it verifies the axial symmetry with respect to the line passing by $\left(\frac{a+b}{2}, 0,0\right)$ and parallels to a reference \vec{k}.

The existence, uniqueness and convergence

As in univariate signals we show that regular function $\vec{f}(t)$ may be locally decomposed on $[a, b]$ as: $\vec{f}(t)=\vec{c}(t)+\vec{T}(t)$ where:

$$
\begin{aligned}
& c_{1}(t)=\frac{x(t)-x(a+b-t)}{2}-\varphi(2 t-(a+b)) \\
& c_{2}(t)=\frac{y(t)+y(a+b-t)}{2}-\psi(2 t-(a+b))
\end{aligned}
$$

φ is odd and ψ is even and are linked to $\vec{T}(t)$.
We also show that $(\vec{c}(t), \vec{T}(t))$ is the unique such that $\vec{c}(t)$ is an EIMF and $\vec{T}(t)$ do not change the convexity on $[a, b]$

Inline extraction in a general bivariate signal

Theorem

Let $\vec{f}(t)=(x(t), y(t))$ be a regular function having $m=2 \ell-1$ inflexion points at a_{1}, \ldots, a_{m}. There exist, a set of odd functions $\left(\varphi_{1}, \ldots, \varphi_{\ell}\right)$ and a set of even functions $\left(\psi_{1}, \ldots, \psi_{\ell}\right)$ such that $\vec{f}(t)=\vec{c}(t)+\vec{T}(t)$ where
$c_{1}(t)=\sum_{i=1}^{\ell} \frac{x(t)-x\left(a_{2 i-1}+a_{2 i+1}-t\right)}{2}-\varphi_{i}\left(2 t-\left(a_{2 i-1}+a_{2 i+1}\right)\right)$
$c_{2}(t)=\sum_{i=1}^{\ell} \frac{y(t)+y\left(a_{2 i-1}+a_{2 i+1}-t\right)}{2}-\psi_{i}\left(2 t-\left(a_{2 i-1}+a_{2 i+1}\right)\right)$
and \vec{T} is a function having at most ℓ inflexion points.

The main algorithms: characteristic points

Algorithm 1: Detection of characteristic points

Input: Bivariate signal $\vec{f}\left(t_{i}\right)=\left(x\left(t_{i}\right), y\left(t_{i}\right)\right)$ observed at $t_{i}, i=1, \ldots, n$

- Calculate first and second derivatives of $x(t), y(t)$
foreach $i=1 \ldots n$ do
- Calculate the vector product

$$
\vec{U}=\left(\begin{array}{c}
1 \\
x^{\prime}\left(t_{i}\right) \\
y^{\prime}\left(t_{i}\right)
\end{array}\right) \wedge\left(\begin{array}{c}
0 \\
x^{\prime \prime}\left(t_{i}\right) \\
y^{\prime \prime}\left(t_{i}\right)
\end{array}\right)
$$

- Calculate the dot product $C u(t)=\vec{U} \cdot \vec{k}$

end

Find the zeros crossing of $\mathrm{Cu}(t), \theta_{1}, \ldots, \theta_{2 m-1}$
Take characteristic points as $a_{i}=\theta_{2 i-1}$ for $i=1, \ldots, m$
Output: Characteristic points $a_{1}, \ldots a_{m}$

Main algorithms: The inline extraction

$$
\begin{array}{r}
\varphi_{i}(t)=\alpha_{1, i} t+\alpha_{2, i} t^{3}+\alpha_{3, i} t^{5} \\
\psi_{i}(t)=\beta_{1, i}+\beta_{2, i} t^{2}+\beta_{3, i} t^{4}
\end{array}
$$

The coefficients in α and β are obtained by a piecewise spline like procedure as in the univariate case.
Algorithm 2: Extraction of rapidly rotating and rapidly oscillating IMFs
Input: Bivariate signal $\vec{f}\left(t_{i}\right)=\left(x\left(t_{i}\right), y\left(t_{i}\right)\right)$ observed at $t_{i}, i=1: n$
Find characteristic points $a_{1}, \ldots a_{m}$ using algorithm1
foreach $i=1 \ldots m-1$ do

- Find coefficients of φ_{i} and ψ_{i} on [a_{i}, a_{i+1}]
- Calculate c_{1} and c_{2} as given in the decomposition theorem.
end
Output: Elementary IMFs $\vec{c}(t)=\left(c_{1}(t), c_{2}(t)\right)$

A simulated example

Azzaoui, Miraoui, Snoussi, Duchêne

A simulated example

Perspectives and further issues

■ Study the sensitivity to sampling and perturbations
■ Generalizing the technique to higher order vectorial and multivariate signals
■ Use the discrete convexity discrete geometry concepts
■ Study of the hidden scales problems

