Empirical Mode Decomposition for vectorial bi-dimensional signals

N. Azzaoui, A. Miraoui, H. Snoussi and J. Duchêne

Technology University of Troyes Charles Delaunay Institute, FRE CNRS 2848 Laboratory (LM2S)

6th International Workshop on Multidimensional (nD) Systems

Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

1 Introduction and preliminaries

- 2 Theoretical formulation of the EMD
 The undimentional case
 The vectorial bivariate case
- 3 Perspectives and further issues

Empirical Modal Decomposition...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

1 Introduction and preliminaries

2 Theoretical formulation of the EMD The undimentional case The vectorial bivariate case

3 Perspectives and further issues

Empirical Modal Decomposition...

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

1 Introduction and preliminaries

2 Theoretical formulation of the EMD The undimentional case The vectorial bivariate case

The vectorial bivariate case

3 Perspectives and further issues

Empirical Modal Decomposition...

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

Empirical Modale Decomposition?

Idea- any signal x(t) can be seen as the superposition of many rapid and slow oscillations (*Huang and al*)

Purposes- Extract this oscillations by decomposing:

$$x(t) = \sum_{k} c_k(t) + r(t),$$

c_k(t) intrinsic modes functions (IMFs) and r(t) is a tendency
 The IMFs- are function verifying:

1 Local symmetry, they have a vanishing local mean

2 oscillations: the maxima (resp. minima) are strictly positives (resp. negatives)

Why doing an EMD?

- Avoid the limits of the usual time-frequency analysis Fourier and Wavelets, *Huang and al 1998*
- More suitable for non stationary and non linear systems
- It has the advantage to not use an a priori bases, so more freedom.
- Finally in term in Hilbert transform and the notion of instantaneous frequencies

$$c_{k}(t) = Re\left\{a_{k}(t)\exp\{j\int 2\pi f_{k}(t)dt\}\right\}, f_{k}(t) \text{ make sense}$$
$$x(t) = Re\left\{\sum_{k}a_{k}(t)\exp\{j\int 2\pi f_{k}(t)dt\}\right\}$$

(ロ) (同) (E) (E) (E)

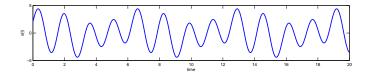
How to implement the EMD?

The sifting algorithm:

- **1** Find local extrema of x(t).
- 2 Calculate the upper enveloppe M(t) and the lower envelope m(t) (using a cubic splines).
- **3** Update the signal, $x(t) \leftarrow x(t) \frac{M(t)+m(t)}{2}$.
- 4 Repeat 1, 2 et 3 until having an IMF c(t).
- **5** Substrat the IMF obtained in 4, $x(t) \leftarrow x(t) c(t)$.
- Repeat 1-5 until having a tendency r(t) (a curve having at most one extremum)

Perspectives

Illustration of the sifting algorithm

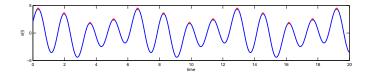


Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

Perspectives

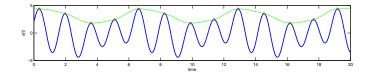
Illustration of the sifting algorithm



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

Illustration of the sifting algorithm

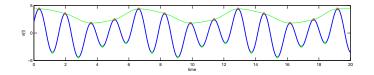


Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

Perspectives

Illustration of the sifting algorithm



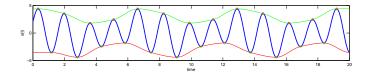
Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

(ロ) (四) (E) (E) (E)

Perspectives

Illustration of the sifting algorithm



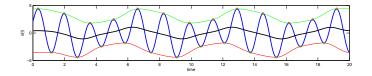
Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

(ロ) (四) (E) (E) (E)

Perspectives

Illustration of the sifting algorithm

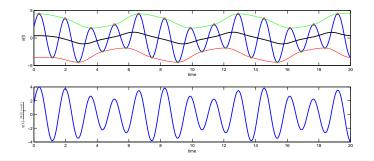


Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

・ロト ・四ト ・ヨト ・ヨト - ヨ

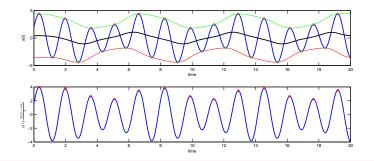
Illustration of the sifting algorithm



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

Illustration of the sifting algorithm

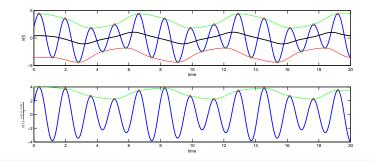


Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

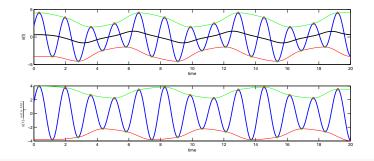
Illustration of the sifting algorithm



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

Illustration of the sifting algorithm



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

Perspectives

Illustration of the sifting algorithm

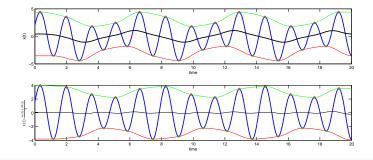


Figure: and so on...

Empirical Modal Decomposition...

Limitations of the EMD

Although EMD has a great success in applications it has some limitations:

- Problems linked to the numerical treatments
 - Determination of a stoping test for the sifting algorithm
 - Instability of the algorithm
 - Sensitivity to perturbations and sampling
- Problems linked to the conception of the EMD
 - Ambiguous definition of IMFs; local symmetry
 - No theoretical formulation
 - Not easy to generalize to vectorial signals (*Flandrin and al 2007*)

1 Introduction and preliminaries

Theoretical formulation of the EMD The undimentional case The vectorial bivariate case

3 Perspectives and further issues

Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

(ロ) (同) (E) (E) (E)

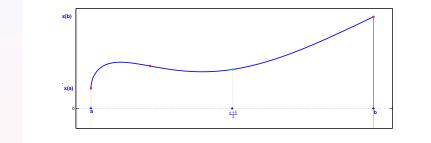
(ロ) (同) (E) (E) (E)

Elementary Intrinsic Mode Functions (EIMF): the 1D case

A regular function x(t) is an EIMF if it verifies:

- 1 The function x(t) has many inflexion points which are also zero-crossing (except eventually the end points of the signal).
- 2 For every three consecutive inflexions, the curve of x(t) is symmetric with respect to the central point
- \implies An EIMF is an IMF in Huang's sense.
 - A tendency is a function having at most one inflexion point

A simple illustration of our idea in 1D case



The idea is to search for a function T(t) such that x(t) - T(t) = c(t) be an EIMF on [a, b] and it verifies the central symmetry with respect to $(\frac{a+b}{2}, 0)$.

A first local formulation

Lemma

Let x(t) a regular function having tow different type of convexity on [a, b]. Then it may be decomposed as x(t) = c(t) + T(t) and,

$$c(t)=\frac{x(t)-x(a+b-t)}{2}-\varphi(2t-(a+b)),$$

where φ is any odd function linked to T by the equality:

$$\varphi(2t-(a+b))=\frac{T(t)-T(a+b-t)}{2}$$

 \implies There exist many couples (φ, T) which are solution of a such problem.

Empirical Modal Decomposition...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Uniqueness of the decomposition

Lemma

Let x(t) be a signal as in last lemma, then the decomposition x(t) = c(t) + T(t) is unique in the sense that: φ is the only one such that the corresponding T did not change its convexity type (only convexe or only concave) on [a, b].

- The fact that T do not change the convexity type on [a, b] implies a less oscillation with respect to the extracted EIMF c(t) (less inflexion points)
- This is the key idea of our algorithms convergence

Inline extraction in a general signal

Theorem

Let x(t) be a regular function on [A, B] and having $m = 2\ell - 1$ inflexion points $I_1(a_1, x(a_1)), \ldots, I_m(a_m, x(a_m))$. we denote $I_0(A, x(A))$ and $I_{m+1}(B, x(B))$. In this cas there exist, a set of odd functions $(\varphi_1, \ldots, \varphi_\ell)$ such that x(t) = c(t) + T(t) where

$$c(t) = \sum_{i=1}^{\ell} \frac{x(t) - x(a_{2i-1} + a_{2i+1} - t)}{2} - \varphi_i(2t - (a_{2i-1} + a_{2i+1}))$$

and T is a function having at most ℓ inflexion points. \implies the convergence But how to determine the φ_i 's?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

A simple method: interpolation like

The purpose is to approach φ_i on [a_{2i-1}, a_{2i+1}] by a polynomial,

$$\varphi_i(t) = \alpha_i(t-m_i) + \beta_i(t-m_i)^3 + \gamma_i(t-m_i)^5, \ m_i = \frac{a_{2i-1} + a_{2i+1}}{2}$$

• Let us denote $h_i = \frac{a_{2i+1}-a_{2i-1}}{2}$ and $D_i = \frac{x(a_{2i+1})-x(a_{2i-1})}{a_{2i+1}-a_{2i-1}}$, we will have:

Porp. EIMF:
$$\alpha_i + \beta_i (h_i)^2 + \gamma_i (h_i)^4 = D_i$$

• Continuity of derivatives in a_{2i+1} gives the equations:

 $\begin{aligned} \varphi' &: \alpha_{i+1} + 3\beta_{i+1}(h_{i+1})^2 + 5\gamma_{i+1}(h_{i+1})^4 = \alpha_i + 3\beta_i(h_i)^2 + 5\gamma_i(h_i)^4 \\ \varphi'' &: 3\beta_{i+1}(h_{i+1}) + 10\gamma_{i+1}(h_{i+1})^3 = 3\beta_i(h_i) + 10\gamma_i(h_i)^3 \end{aligned}$

Advanced method: piecewise polynomial

- On a local interval [a, b] we observe x(t) at instants $t_0, t_1, \ldots, t_n, t_{n+1} = \frac{a+b}{2}$ et $a+b-t_n, a+b-t_{n-1}, \ldots, a+b-t_0 = b$
- in the left side, between successive instants [*t_i*, *t_{i+1}*] we define the polynomials,

$$S_{i}^{\ell}(t) = \alpha_{0}^{i} + \alpha_{1}^{i}(2t - (a+b)) + \alpha_{2}^{i}(2t - (a+b))^{2} + \alpha_{3}^{i}(2t - (a+b))^{3},$$

• In the right side $[a + b - t_{i+1}, a + b - t_i]$,

$$S_i^r(t) = eta_0^i + eta_1^i(2t - (a+b)) + eta_2^i(2t - (a+b))^2 + eta_3^i(2t - (a+b))^3$$

 \implies The purpose is to find α , β .

Advanced method: piecewise polynomials

• Using the fact that for $t = (t_i, i = 1, ..., n)$

$$S_i^\ell(t) + S_i^r(a+b-t) = x(t) + x(a+b-t)$$

we have:

 $\begin{aligned} A_0^i + A_1^i (2t - (a+b)) + A_2^i (2t - (a+b))^2 + A_3^i (2t - (a+b))^3 &= M(t) \\ \text{where } M(t) &= x(t) + x(a+b-t) \text{ and} \\ \begin{cases} A_0^i &= \alpha_0^i + \beta_0^i & ; & A_2^i = \alpha_2^i + \beta_2^i \\ A_1^i &= \alpha_1^i - \beta_1^i & ; & A_3^i = \alpha_3^i - \beta_3^i \end{cases} \end{aligned}$

The coefficients Aⁱ₀, Aⁱ₁, Aⁱ₂ and Aⁱ₃ are determined using a similar technic as in cubic splines

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Advanced method: piecewise polynomial

By symmetry,
$$\alpha_0^i=\beta_0^i=rac{A_0^i}{2}$$
 ; $\alpha_2^i=\beta_2^i=rac{A_2^i}{2}$

• We denote $X_i = 2t_i - (a + b)$ and compute,

$$B_{i+1} = \frac{(A_2^i - A_2^{i+1})}{4} (X_{i+1}) - \frac{(A_0^i - A_0^{i+1})}{4(X_{i+1})}$$

 we deduce the coefficients α, β (using continuity and derivatives),

$$\alpha_{1}^{i} = \alpha_{1}^{0} + \sum_{j=1}^{i} A_{j} \quad ; \quad \alpha_{3}^{i} = \alpha_{3}^{0} + \sum_{j=1}^{i} B_{j}$$
$$\beta_{1}^{i} = \alpha_{1}^{i} - A_{1}^{i} \qquad ; \quad \beta_{3}^{i} = \alpha_{3}^{i} - A_{3}^{i}$$

Advanced method: piecewise polynomial

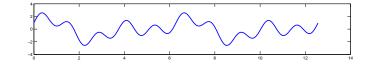
We compute

$$\mathbb{M}_{1} = \min_{i} \left(A_{2}^{i} + \frac{\beta_{2}^{i}}{3(X_{i+1})} - \sum_{j=1}^{i} B_{j} \right); \mathbb{M}_{2} = \max_{i} \left(\frac{-\alpha_{2}^{i}}{3(X_{i+1})} - \sum_{j=1}^{i} B_{j} \right)$$
$$\mathbb{M}_{3} = \max_{i} \left(A_{2}^{i} + \frac{\beta_{2}^{i}}{3(X_{i+1})} - \sum_{j=1}^{i} B_{j} \right); \mathbb{M}_{4} = \min_{i} \left(\frac{-\alpha_{2}^{i}}{3(X_{i+1})} - \sum_{j=1}^{i} B_{j} \right)$$

• if
$$x(\frac{a+b}{2}) \leq \frac{x(a)+x(b)}{2}$$
 (convexity) we take,
 $\mathbb{M}_1 \leq \alpha_0^3 \leq \mathbb{M}_2$
• $x(\frac{a+b}{2}) \leq \frac{x(a)+x(b)}{2}$ (concavity) we take
 $\mathbb{M}_3 \leq \alpha_0^3 \leq \mathbb{M}_4$

(日) (四) (注) (注) (三)

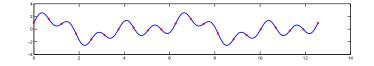
Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

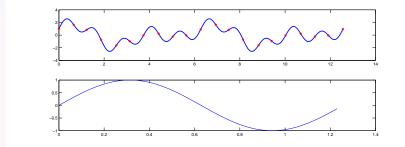
Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

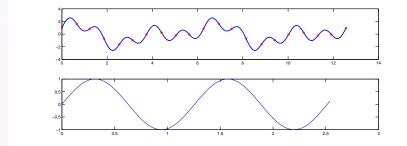
Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

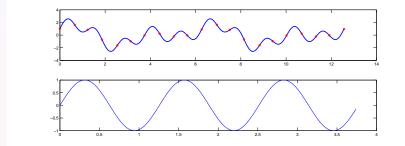
Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

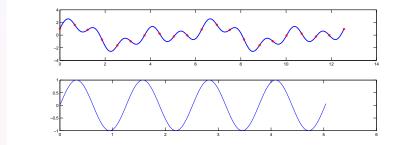
Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

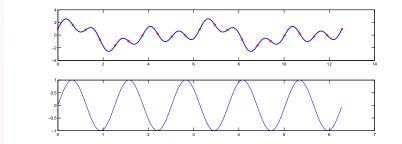
Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

Illustration of the algorithm in action

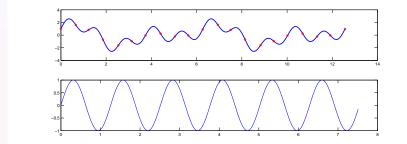


Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

<ロ> (四) (四) (三) (三) (三) (三)

Illustration of the algorithm in action

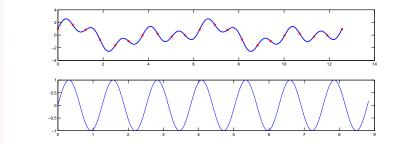


Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

<ロ> (四) (四) (三) (三) (三) (三)

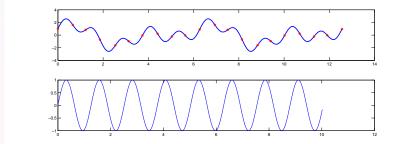
Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

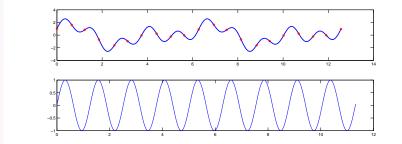
Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

Illustration of the algorithm in action

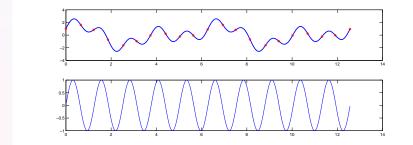


Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Illustration of the algorithm in action



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Illustration of the algorithm in action

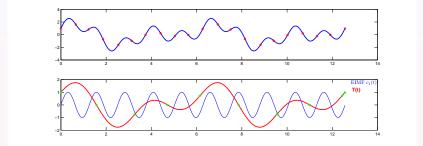


Figure: We extract the first EIMF in the same time we ensure that T(t) is slower than c(t)

Empirical Modal Decomposition...

Outlines

1 Introduction and preliminaries

Theoretical formulation of the EMD The undimentional case

The vectorial bivariate case

3 Perspectives and further issues

(ロ) (同) (E) (E) (E)

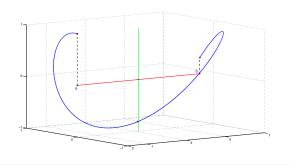
Elementary Intrinsic Mode Functions (EIMF) the 2D case

A bivariate EIMF is a bivariate function having one of the following shapes:

- Rotating EIMFs: they are non-planar curves that are turning around the time axis (they have a spiral shape) in addition they are locally axially symmetric.
- Oscillating EIMFs: it is a planar curve having many changes of the convexity and have a "local symmetry" as well. In their containing plan, they can be seen as univariate EIMFs.
- Tendencies: they are planar or non planar curves which have no inflexion.

(ロ) (同) (E) (E) (E)

A simple illustration: the 2D case



For $\overrightarrow{f}(t) = (x(t), y(t))$, the idea is to search for $\overrightarrow{T}(t) = (T_1(t), T_2(t))$ such that $\overrightarrow{f}(t) - \overrightarrow{T}(t) = \overrightarrow{c}(t)$ be a bivariate EIMF on [a, b] and it verifies the axial symmetry with respect to the line passing by $(\frac{a+b}{2}, 0, 0)$ and parallels to a reference \overrightarrow{k} .

The existence, uniqueness and convergence

As in univariate signals we show that regular function $\overrightarrow{f}(t)$ may be locally decomposed on [a, b] as: $\overrightarrow{f}(t) = \overrightarrow{c}(t) + \overrightarrow{T}(t)$ where:

$$c_1(t) = \frac{x(t) - x(a+b-t)}{2} - \varphi(2t - (a+b))$$

$$c_2(t) = \frac{y(t) + y(a+b-t)}{2} - \psi(2t - (a+b))$$

 φ is odd and ψ is even and are linked to $\vec{T}(t)$.

We also show that $(\vec{c}(t), \vec{T}(t))$ is the unique such that $\vec{c}(t)$ is an EIMF and $\vec{T}(t)$ do not change the convexity on [a, b]

イロン イロン イヨン イヨン ヨ

Inline extraction in a general bivariate signal

Theorem

Let $\vec{f}(t) = (x(t), y(t))$ be a regular function having $m = 2\ell - 1$ inflexion points at a_1, \ldots, a_m . There exist, a set of odd functions $(\varphi_1, \ldots, \varphi_\ell)$ and a set of even functions $(\psi_1, \ldots, \psi_\ell)$ such that $\vec{f}(t) = \vec{c}(t) + \vec{T}(t)$ where

$$c_{1}(t) = \sum_{i=1}^{\ell} \frac{x(t) - x(a_{2i-1} + a_{2i+1} - t)}{2} - \varphi_{i}(2t - (a_{2i-1} + a_{2i+1}))$$

$$c_{2}(t) = \sum_{i=1}^{\ell} \frac{y(t) + y(a_{2i-1} + a_{2i+1} - t)}{2} - \psi_{i}(2t - (a_{2i-1} + a_{2i+1}))$$

and \overrightarrow{T} is a function having at most ℓ inflexion points.

・ロン ・四 と ・ 日 ・ ・ 日 ・

The main algorithms: characteristic points

Algorithm 1: Detection of characteristic points

Input: Bivariate signal $\overrightarrow{f}(t_i) = (x(t_i), y(t_i))$ observed at $t_i, i = 1, ..., n$ - Calculate first and second derivatives of x(t), y(t)

foreach $i = 1 \dots n$ do

- Calculate the vector product

$$\stackrel{
ightarrow}{U=}\left(egin{array}{c}1\x'(t_i)\y'(t_i)\end{array}
ight)\wedge\left(egin{array}{c}0\x''(t_i)\y''(t_i)\end{array}
ight)$$

- Calculate the dot product $Cu(t) = \overrightarrow{U} \cdot \overrightarrow{k}$

end

Find the zeros crossing of Cu(t), $\theta_1, \ldots, \theta_{2m-1}$ Take characteristic points as $a_i = \theta_{2i-1}$ for $i = 1, \ldots, m$ **Output**: Characteristic points a_1, \ldots, a_m

A D A A B A A B A A B A

Main algorithms: The inline extraction

$$\begin{aligned} \varphi_i(t) &= \alpha_{1,i}t + \alpha_{2,i}t^3 + \alpha_{3,i}t^5, \\ \psi_i(t) &= \beta_{1,i} + \beta_{2,i}t^2 + \beta_{3,i}t^4. \end{aligned}$$

The coefficients in α and β are obtained by a piecewise spline like procedure as in the univariate case.

Algorithm 2: Extraction of rapidly rotating and rapidly oscillating IMFs

Input: Bivariate signal $\overrightarrow{f}(t_i) = (x(t_i), y(t_i))$ observed at $t_i, i = 1 : n$ Find characteristic points $a_1, \ldots a_m$ using algorithm1

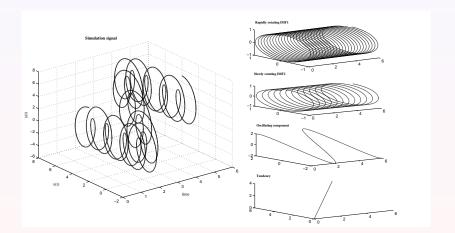
foreach $i = 1 \dots m - 1$ do

- Find coefficients of φ_i and ψ_i on $[a_i, a_{i+1}]$ - Calculate c_1 and c_2 as given in the decomposition theorem.

end

Output: Elementary IMFs
$$\overrightarrow{c}(t) = (c_1(t), c_2(t))$$

A simulated example



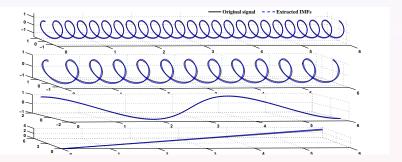
Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

イロト イヨト イヨト イヨト

Э

A simulated example



Azzaoui, Miraoui, Snoussi, Duchêne

Empirical Modal Decomposition...

<ロ> (四) (四) (三) (三) (三) 三

Perspectives and further issues

- Study the sensitivity to sampling and perturbations
- Generalizing the technique to higher order vectorial and multivariate signals
- Use the discrete convexity discrete geometry concepts
- Study of the hidden scales problems

(ロ) (同) (E) (E) (E)