A generalization of the Poincaré-Miranda theorem with an application to the controllability of nonlinear repetitive processes¹

Dariusz Idczak and Marek Majewski

Department of Mathematics and Computer Science University of Łódź, Poland

 $^{^1}$ This work is a part of the research project N514 027 32/3630 supported by the Ministry of Science and Higher Education (Poland).

Theorem (Bolzano)

If a function $f:[-L,L] \to \mathbb{R}$ is continuous and such that

$$f(-L) \leqslant 0$$
 and $f(L) \geqslant 0$

then there exist at least one point $x_* \in [-L, L]$ such that $f(x_*) = 0$.

Theorem (Bolzano)

If a function $f:[-L,L] \to \mathbb{R}$ is continuous and such that

$$f(-L) \leqslant 0$$
 and $f(L) \geqslant 0$

then there exist at least one point $x_* \in [-L, L]$ such that $f(x_*) = 0$.

This theorem was first stated by Bernard Bolzano (1781 - 1848) in 1817

$$f(x) = 0$$

$$f(x) = 0$$

$$f:\mathbb{R}^n\to\mathbb{R}^n$$

$$f(x) = 0$$

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

In 1940 Carlo Miranda (1912 –1982) proved the following theorem announced by Poincaré in 1883

$$f(x) = 0$$

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

In 1940 Carlo Miranda (1912 –1982) proved the following theorem announced by Poincaré in 1883

Theorem (Poincaré-Miranda I)

Let $Q:=[-L,L]\times...\times[-L,L]$ where L>0 is a fixed number, be an interval in \mathbb{R}^n . If a continuous function $f=(f_1,...,f_n):Q\to\mathbb{R}^n$ is such that for any i=1,...,n

$$f_i(x) \geqslant 0$$
 for each $x \in Q_i^- := \{x = (x_1, ..., x_n) \in Q; x_i = -L\},$
 $f_i(x) \leqslant 0$ for each $x \in Q_i^+ := \{x = (x_1, ..., x_n) \in Q; x_i = L\}$

then there exist at least one point $x_* \in Q$ such that $f(x_*) = 0$.

 $\mathcal{R}:=\mathbb{R}\times\mathbb{R}\times...$

- natural algebraic operations
- ullet the classical Tikhonov topology au.

 $\mathcal{R} := \mathbb{R} \times \mathbb{R} \times ...$

- natural algebraic operations
- the classical Tikhonov topology τ .

Convergence of a sequence

$$(z^{(n)})_{n\in\mathbb{N}}$$

to a point $z^{(0)}$ in the space $\mathcal R$ means that

$$z_i^{(n)} \rightarrow z_i^{(0)}$$

for any $i \in \mathbb{N}$.

Let

$$\mathcal{Q} := [-L, L] \times [-L, L] \times \dots$$

where L > 0 is a fixed number, be an interval in \mathcal{R} .

Example

Let

$$\mathcal{Q} := [-L, L] \times [-L, L] \times \dots$$

where L > 0 is a fixed number, be an interval in \mathcal{R} . \mathcal{Q} is convex and compact in \mathcal{R} .

Let

$$Q := [-L, L] \times [-L, L] \times \dots$$

where L>0 is a fixed number, be an interval in \mathcal{R} . \mathcal{Q} is convex and compact in \mathcal{R} .

Theorem (Poincaré-Miranda II)

If a continuous function $f=(f_1,f_2,...):\mathcal{Q}\to\mathcal{R}$ is such that for any $i\in\mathbb{N}$

$$f_i(x) \geqslant 0$$
 for each $x \in Q_i^- := \{x = (x_1, x_2, ...) \in Q; x_i = -L\},$

$$f_i(x) \leqslant 0$$
 for each $x \in \mathcal{Q}_i^+ := \{x = (x_1, x_2, ...) \in \mathcal{Q}; x_i = L\},$

then there exists at least one point $x_* \in \mathcal{Q}$ such that $f(x_*) = 0$.

$$\begin{cases} \frac{d}{dt} z_{k+1}(t) = f^1(t, z_{k+1}(t), w_k(t), u_{k+1}(t)) \\ w_{k+1}(t) = f^2(t, z_{k+1}(t), w_k(t), u_{k+1}(t)) \end{cases}$$
(1)

for $k \in \mathbb{N} \cup \{0\}$, $t \in [0, \alpha]$ a.e. $(\alpha > 0$ is a fixed number),

$$\begin{cases} \frac{d}{dt} z_{k+1}(t) = f^1(t, z_{k+1}(t), w_k(t), u_{k+1}(t)) \\ w_{k+1}(t) = f^2(t, z_{k+1}(t), w_k(t), u_{k+1}(t)) \end{cases}$$
(1)

for $k \in \mathbb{N} \cup \{0\}$, $t \in [0, \alpha]$ a.e. ($\alpha > 0$ is a fixed number), with the initial conditions

$$\begin{cases} z_k(0) = d_k, & k \in \mathbb{N} \\ w_0(t) = h(t), & t \in [0, \alpha] \text{ a.e.} \end{cases}$$
 (2)

where

$$z_k(t) \in \mathbb{R}, \ w_k(t) \in \mathbb{R}, \ u_k(t) \in \mathbb{R},$$

$$\begin{cases} \frac{d}{dt} z_{k+1}(t) = f^{1}(t, z_{k+1}(t), w_{k}(t), u_{k+1}(t)) \\ w_{k+1}(t) = f^{2}(t, z_{k+1}(t), w_{k}(t), u_{k+1}(t)) \end{cases}$$
(1)

for $k \in \mathbb{N} \cup \{0\}$, $t \in [0, \alpha]$ a.e. ($\alpha > 0$ is a fixed number), with the initial conditions

$$\begin{cases} z_k(0) = d_k, & k \in \mathbb{N} \\ w_0(t) = h(t), & t \in [0, \alpha] \text{ a.e.} \end{cases}$$
 (2)

where

$$z_k(t) \in \mathbb{R}$$
, $w_k(t) \in \mathbb{R}$, $u_k(t) \in \mathbb{R}$,

points $d_k \in \mathbb{R}$, $k \in \mathbb{N}$, and a function $h : [0, \alpha] \to \mathbb{R}$ are fixed initial data.

$$\begin{cases} \frac{d}{dt} z_{k+1}(t) = f^1(t, z_{k+1}(t), w_k(t), u_{k+1}(t)) \\ w_{k+1}(t) = f^2(t, z_{k+1}(t), w_k(t), u_{k+1}(t)) \end{cases}$$
(1)

for $k \in \mathbb{N} \cup \{0\}$, $t \in [0, \alpha]$ a.e. ($\alpha > 0$ is a fixed number), with the initial conditions

$$\begin{cases} z_k(0) = d_k, & k \in \mathbb{N} \\ w_0(t) = h(t), & t \in [0, \alpha] \text{ a.e.} \end{cases}$$
 (2)

where

$$z_k(t) \in \mathbb{R}, \ w_k(t) \in \mathbb{R}, \ u_k(t) \in \mathbb{R},$$

points $d_k \in \mathbb{R}$, $k \in \mathbb{N}$, and a function $h : [0, \alpha] \to \mathbb{R}$ are fixed initial data.

 $u_k(\cdot)$ – a control on a pass k, $z_k(\cdot)$ – a trajectory on a pass k $w_k(\cdot)$ – an output on a pass k.

Fix a nonempty set $\Omega\subset\mathbb{R}$

Fix a nonempty set $\Omega \subset \mathbb{R}$

Assume that functions $f^i:[0,\alpha]\times\mathbb{R}\times\mathbb{R}\times\Omega\to\mathbb{R},\ i=1,2$, satisfy the condition

Controllability

Fix a nonempty set $\Omega \subset \mathbb{R}$

Assume that functions $f^i:[0,\alpha]\times\mathbb{R}\times\mathbb{R}\times\Omega\to\mathbb{R},\ i=1,2$, satisfy the condition

 A_f . f^i is measurable in $t \in [0, \alpha]$, continuous in $u \in \Omega$ and lipschitzian in $(z, w) \in \mathbb{R} \times \mathbb{R}$, i.e. there exists a constant $K_i > 0$ such that

$$\left|f^{i}(t,z,w,u)-f^{i}(t,\overline{z},\overline{w},u)\right|\leqslant K_{i}(|z-\overline{z}|+|w-\overline{w}|)$$

for $t \in [0, \alpha]$ a.e., z, $\overline{z} \in \mathbb{R}$, w, $\overline{w} \in \mathbb{R}$, $u \in \Omega$,

Fix a nonempty set $\Omega \subset \mathbb{R}$

Assume that functions $f^i:[0,\alpha]\times\mathbb{R}\times\mathbb{R}\times\Omega\to\mathbb{R},\ i=1,2$, satisfy the condition

 A_f . f^i is measurable in $t \in [0, \alpha]$, continuous in $u \in \Omega$ and lipschitzian in $(z, w) \in \mathbb{R} \times \mathbb{R}$, i.e. there exists a constant $K_i > 0$ such that

$$\left|f^{i}(t,z,w,u)-f^{i}(t,\overline{z},\overline{w},u)\right|\leqslant K_{i}(|z-\overline{z}|+|w-\overline{w}|)$$

for $t \in [0, \alpha]$ a.e., $z, \overline{z} \in \mathbb{R}$, $w, \overline{w} \in \mathbb{R}$, $u \in \Omega$,

 B_{f^1} . for any measurable function $u:[0,\alpha]\to\Omega$ the function $f^1(\cdot,0,0,u(\cdot))$ is integrable on $[0,\alpha]$.

$$z(\cdot) = (z_1(\cdot), z_2(\cdot), ...) : [0, \alpha] \to \mathcal{R}$$

$$z(\cdot) = (z_1(\cdot), z_2(\cdot), ...) : [0, \alpha] \to \mathcal{R}$$

such that $z_i(\cdot) \in AC([0, \alpha], \mathbb{R})$, $i \in \mathbb{N}$,

$$z(\cdot) = (z_1(\cdot), z_2(\cdot), ...) : [0, \alpha] \to \mathcal{R}$$

such that $z_i(\cdot) \in AC([0, \alpha], \mathbb{R})$, $i \in \mathbb{N}$,

 $L^1([0,\alpha],\Omega\times\Omega\times...)$ – the space of functions

$$u(\cdot) = (u_1(\cdot), u_2(\cdot), ...) : [0, \alpha] \to \Omega \times \Omega \times ...$$

such that $u_i(\cdot) \in L^1([0,\alpha],\mathbb{R})$, $i \in \mathbb{N}$.

$$z(\cdot) = (z_1(\cdot), z_2(\cdot), ...) : [0, \alpha] \rightarrow \mathcal{R}$$

such that $z_i(\cdot) \in AC([0, \alpha], \mathbb{R})$, $i \in \mathbb{N}$,

 $L^1([0,\alpha],\Omega\times\Omega\times...)$ – the space of functions

$$u(\cdot) = (u_1(\cdot), u_2(\cdot), ...) : [0, \alpha] \rightarrow \Omega \times \Omega \times ...$$

such that $u_i(\cdot) \in L^1([0,\alpha],\mathbb{R})$, $i \in \mathbb{N}$.

The spaces $AC([0, \alpha], \mathcal{R})$, $L^1([0, \alpha], \Omega \times \Omega \times ...)$ will be considered with Tikhonov topologies.

Theorem

If the functions f^1 , f^2 satisfy conditions A_f , B_{f^1} , then for any initial points $d_i \in \mathbb{R}$, $i \in \mathbb{N}$, measurable function $h : [0, \alpha] \to \mathbb{R}$, and for any control $(u_1(\cdot), u_2(\cdot), ...)$ with measurable coordinate functions $u_i : [0, \alpha] \to \Omega$, $i \in \mathbb{N}$, repetitive process (1)-(2) has a unique solution $(z_1(\cdot), z_2(\cdot), ...) \in AC([0, \alpha], \mathcal{R})$.

Controllability

$\mathsf{Theorem}$

If the functions f^1 , f^2 satisfy conditions A_f , B_{f^1} , then for any initial points $d_i \in \mathbb{R}, i \in \mathbb{N}$, measurable function $h: [0, \alpha] \to \mathbb{R}$, and for any control $(u_1(\cdot), u_2(\cdot), ...)$ with measurable coordinate functions $u_i : [0, \alpha] \to \Omega, i \in \mathbb{N}$, repetitive process (1)-(2) has a unique solution $(z_1(\cdot), z_2(\cdot), ...) \in AC([0, \alpha], \mathcal{R}).$

Moreover, if a sequence of controls $(u^{(n)}(\cdot)) = (u_1^{(n)}(\cdot), u_2^{(n)}(\cdot), ...)$ converges in $L^1([0,\alpha],\Omega\times\Omega\times...)$ to some $u^0(\cdot)$, then $z_i^{(n)}(\cdot)\to z_i^0(\cdot)$ in $AC([0,\alpha],\mathbb{R})$ for $i \in \mathbb{N}$, where $(z_1^{(n)}(\cdot), z_2^{(n)}(\cdot), ...)$ is the trajectory corresponding to control $(u_1^{(n)}(\cdot), u_2^{(n)}(\cdot), ...), n \in \mathbb{N} \cup \{0\}.$

Since the convergence with respect to norm in $AC([0, \alpha], \mathbb{R})$ implies the pointwise one, therefore

Since the convergence with respect to norm in $AC([0, \alpha], \mathbb{R})$ implies the pointwise one, therefore

Theorem

If the functions f^1 , f^2 satisfy conditions A_f , B_{f^1} , then for any fixed initial points $d_i \in \mathbb{R}$, $i \in \mathbb{N}$, and measurable function $h : [0, \alpha] \to \mathbb{R}$ the mapping

$$\Phi: L^{1}([0,\alpha],\Omega\times\Omega\times...)\ni u(\cdot)=(u_{1}(\cdot),u_{2}(\cdot),...)$$

$$\longmapsto z^{u}(\alpha)=(z_{1}^{u}(\alpha),z_{2}^{u}(\alpha),...)\in\mathcal{R}$$

is continuous (here $z^u(\cdot)$ is the solution of process (1)-(2), corresponding to control $u(\cdot)$).

Now, let us fix the controls

$$u^{(i)}(\cdot) \in L^1([0,\alpha],\Omega \times \Omega \times ...)$$

of some special form:

The Poincaré-Miranda Theorem

Now, let us fix the controls

$$u^{(i)}(\cdot) \in L^1([0,\alpha],\Omega \times \Omega \times ...)$$

of some special form:

$$u^{(i)}(\cdot) = (0, ..., 0, u_i(\cdot), 0, ...)$$

Now, let us fix the controls

$$u^{(i)}(\cdot) \in L^1([0,\alpha],\Omega \times \Omega \times ...)$$

of some special form:

$$u^{(i)}(\cdot) = (0,...,0,u_i(\cdot),0,...)$$

where $u_i(\cdot) \in L^1([0, \alpha], \Omega)$.

$$u^{(i)}(\cdot) \in L^1([0,\alpha], \Omega \times \Omega \times ...)$$

of some special form:

$$u^{(i)}(\cdot) = (0, ..., 0, u_i(\cdot), 0, ...)$$

where $u_i(\cdot) \in L^1([0, \alpha], \Omega)$.

Consider the set

$$U = \{u(\cdot) = \sum_{i=1}^{\infty} \beta_i u^{(i)}(\cdot); \ \beta = (\beta_1, \beta_2, ...) \in \mathcal{R}\} = \{u(\cdot) = (\beta_1 u_1(\cdot), \beta_2 u_2(\cdot), ...); \beta = (\beta_1, \beta_2, ...) \in \mathcal{R}\}..$$

$$u^{(i)}(\cdot) \in L^1([0,\alpha], \Omega \times \Omega \times ...)$$

of some special form:

$$u^{(i)}(\cdot) = (0, ..., 0, u_i(\cdot), 0, ...)$$

where $u_i(\cdot) \in L^1([0,\alpha],\Omega)$.

Consider the set

$$U = \{u(\cdot) = \sum_{i=1}^{\infty} \beta_i u^{(i)}(\cdot); \ \beta = (\beta_1, \beta_2, ...) \in \mathcal{R}\} = \{u(\cdot) = (\beta_1 u_1(\cdot), \beta_2 u_2(\cdot), ...); \beta = (\beta_1, \beta_2, ...) \in \mathcal{R}\}.$$

Let $\kappa: \mathcal{R} \to L^1([0,\alpha],\mathcal{R})$ be a mapping given by

$$\kappa(\beta_1, \beta_2, ...) = (\beta_1 u_1(\cdot), \beta_2 u_2(\cdot), ...).$$

Now, let us fix the controls

$$u^{(i)}(\cdot) \in L^1([0,\alpha],\Omega \times \Omega \times ...)$$

of some special form:

$$u^{(i)}(\cdot) = (0, ..., 0, u_i(\cdot), 0, ...)$$

where $u_i(\cdot) \in L^1([0,\alpha],\Omega)$.

Consider the set

$$U = \{u(\cdot) = \sum_{i=1}^{\infty} \beta_i u^{(i)}(\cdot); \ \beta = (\beta_1, \beta_2, ...) \in \mathcal{R}\} = \{u(\cdot) = (\beta_1 u_1(\cdot), \beta_2 u_2(\cdot), ...); \beta = (\beta_1, \beta_2, ...) \in \mathcal{R}\}..$$

Let $\kappa: \mathcal{R} \to L^1([0,\alpha],\mathcal{R})$ be a mapping given by

$$\kappa(\beta_1, \beta_2, ...) = (\beta_1 u_1(\cdot), \beta_2 u_2(\cdot), ...).$$

Of course, it is continuous.

NDS09, Thessaloniki, Greece

Example

$$P := [a_1, b_1] \times [a_2, b_2] \times ... \subset \mathcal{R}$$

Example

$$P:=[a_1,b_1]\times [a_2,b_2]\times ...\subset \mathcal{R}$$

where $a_i \leqslant b_i$ for all $i \in \mathbb{N}$

$$P := [a_1, b_1] \times [a_2, b_2] \times ... \subset \mathcal{R}$$

where $a_i \leq b_i$ for all $i \in \mathbb{N}$

and assume that $[a_i, b_i] \cdot \Omega \subset \Omega$ for $i \in \mathbb{N}$.

$$P := [a_1, b_1] \times [a_2, b_2] \times ... \subset \mathcal{R}$$

where $a_i \leqslant b_i$ for all $i \in \mathbb{N}$

and assume that $[a_i, b_i] \cdot \Omega \subset \Omega$ for $i \in \mathbb{N}$.

Consequently, the mapping
$$\varphi = \Phi \circ (\kappa \mid_P) = (\varphi_1, \varphi_2, ...) : P \to \mathcal{R}$$

$$\varphi_i(\beta_1,...,\beta_{i-1},\beta_i,\beta_{i+1},...) = z_i^{(\beta_1 u_1(\cdot),\beta_2 u_2(\cdot),...)}(\alpha)$$

$$P := [a_1, b_1] \times [a_2, b_2] \times ... \subset \mathcal{R}$$

where $a_i \leq b_i$ for all $i \in \mathbb{N}$

and assume that $[a_i, b_i] \cdot \Omega \subset \Omega$ for $i \in \mathbb{N}$.

Consequently, the mapping $\varphi = \Phi \circ (\kappa \mid_P) = (\varphi_1, \varphi_2, ...) : P \to \mathcal{R}$

$$\varphi_i(\beta_1,...,\beta_{i-1},\beta_i,\beta_{i+1},...)=z_i^{(\beta_1u_1(\cdot),\beta_2u_2(\cdot),...)}(\alpha)$$

is well-defined and continuous.

Sufficient condition for the controllability

Let us assume that the functions f^1 , f^2 satisfy conditions A_f , B_{f^1} and initial points $d_i \in \mathbb{R}$, $i \in \mathbb{N}$, and measurable function $h : [0, \alpha] \to \mathbb{R}$ are given.

Controllability

Sufficient condition for the controllability

Let us assume that the functions f^1 , f^2 satisfy conditions A_f , B_{f^1} and initial points $d_i \in \mathbb{R}$, $i \in \mathbb{N}$, and measurable function $h : [0, \alpha] \to \mathbb{R}$ are given.

If $m_i \leqslant M_i$ for $i \in \mathbb{N}$, where

$$M_{i} := \min\{\varphi_{i}(\beta_{1},...,\beta_{i-1},a_{i},\beta_{i+1},...); (\beta_{1},...,\beta_{i-1},a_{i},\beta_{i+1},...) \in P\},$$

$$m_{i} := \max\{\varphi_{i}(\beta_{1},...,\beta_{i-1},b_{i},\beta_{i+1},...); (\beta_{1},...,\beta_{i-1},b_{i},\beta_{i+1},...) \in P\},$$

Let us assume that the functions f^1 , f^2 satisfy conditions A_f , B_{f^1} and initial points $d_i \in \mathbb{R}$, $i \in \mathbb{N}$, and measurable function $h : [0, \alpha] \to \mathbb{R}$ are given.

If $m_i \leqslant M_i$ for $i \in \mathbb{N}$, where

$$\textit{M}_{\textit{i}} \ := \ \min\{\varphi_{\textit{i}}(\beta_{1},...,\beta_{\textit{i}-1},\textit{a}_{\textit{i}},\beta_{\textit{i}+1},...); \big(\beta_{1},...,\beta_{\textit{i}-1},\textit{a}_{\textit{i}},\beta_{\textit{i}+1},...\big) \in \textit{P}\},$$

$$m_i := \max\{\varphi_i(\beta_1,...,\beta_{i-1},b_i,\beta_{i+1},...); (\beta_1,...,\beta_{i-1},b_i,\beta_{i+1},...) \in P\},$$

then for any point $z \in [m_1, M_1] \times [m_2, M_2] \times ... \subset \mathcal{R}$ there exist $\beta_i \in [a_i, b_i]$, $i \in \mathbb{N}$, such that

Let us assume that the functions f^1 , f^2 satisfy conditions A_f , B_{f^1} and initial points $d_i \in \mathbb{R}$, $i \in \mathbb{N}$, and measurable function $h : [0, \alpha] \to \mathbb{R}$ are given.

If $m_i \leq M_i$ for $i \in \mathbb{N}$, where

$$M_i := \min\{\varphi_i(\beta_1,...,\beta_{i-1},a_i,\beta_{i+1},...); (\beta_1,...,\beta_{i-1},a_i,\beta_{i+1},...) \in P\},$$

$$m_i := \max\{\varphi_i(\beta_1,...,\beta_{i-1},b_i,\beta_{i+1},...); (\beta_1,...,\beta_{i-1},b_i,\beta_{i+1},...) \in P\},$$

then for any point $z \in [m_1, M_1] \times [m_2, M_2] \times ... \subset \mathcal{R}$ there exist $\beta_i \in [a_i, b_i]$, $i \in \mathbb{N}$, such that

$$z^{(\beta_1u_1(\cdot),\beta_2u_2(\cdot),\ldots)}(\alpha)=z.$$

$$\begin{cases} \frac{d}{dt}z_{i+1}(t) = z_{i+1}(t) - w_i(t) \cdot u_{i+1}(t) \\ w_{i+1}(t) = z_{i+1}(t) \end{cases}$$

NDS09, Thessaloniki, Greece

$$\begin{cases} \frac{d}{dt} z_{i+1}(t) = z_{i+1}(t) - w_i(t) \cdot u_{i+1}(t) \\ w_{i+1}(t) = z_{i+1}(t) \end{cases}$$

$$\begin{cases} z_i(0) = 1, & i \in \mathbb{N} \\ w_0(t) = 0, & t \in [0, \alpha] \text{ a.e.} \end{cases}$$

$$\begin{cases} \frac{d}{dt} z_{i+1}(t) = z_{i+1}(t) - w_i(t) \cdot u_{i+1}(t) \\ w_{i+1}(t) = z_{i+1}(t) \end{cases}$$

$$\left\{ \begin{array}{l} z_i(0)=1, \ i\in\mathbb{N} \\ w_0(t)=0, \ t\in[0,\alpha] \ \text{a.e.} \end{array} \right.$$

Let

$$\begin{split} \Omega &= [-1,1],\\ P &= [-1,1] \times [-1,1] \times ... \subset \mathcal{R} \end{split}$$

$$\begin{cases} \frac{d}{dt}z_{i+1}(t) = z_{i+1}(t) - w_i(t) \cdot u_{i+1}(t) \\ w_{i+1}(t) = z_{i+1}(t) \end{cases}$$

$$\left\{ \begin{array}{l} z_i(0)=1, \ i\in\mathbb{N} \\ w_0(t)=0, \ t\in[0,\alpha] \ \text{a.e.} \end{array} \right.$$

Let

$$\Omega = [-1,1],$$

$$P = [-1,1] \times [-1,1] \times ... \subset \mathcal{R}$$

and fix the functions

$$u_i:[0,1]\ni t\longmapsto 1\in\Omega$$

for $i \in \mathbb{N}$.

In our case

$$(\beta_1 u_1(\cdot), \beta_2 u_2(\cdot), \ldots) \equiv (\beta_1, \beta_2, \ldots)$$

and

$$\varphi_i(\beta_1,...,\beta_{i-1},\beta_i,\beta_{i+1},...) = z_i^{(\beta_1u_1(\cdot),\beta_2u_2(\cdot),...)}(1) = z_i^{(\beta_1,\beta_2,...)}(1) = z_i^{(\beta_1,...,\beta_i)}(1)$$

for $i \in \mathbb{N}$.

for $i \ge 2$.

$$\begin{split} M_i &= \min\{\varphi_i(\beta_1,...,\beta_{i-1},-1,\beta_{i+1},...); (\beta_1,...,\beta_{i-1},-1,\beta_{i+1},...) \in P\} \\ &= \min\{z_i^{\beta_1,...,\beta_{i-1},-1}(1); (\beta_1,...,\beta_{i-1},-1) \in [-1,1] \times ... \times [-1,1]\} \\ &\geqslant e(4 - \sum_{k=0}^{i-1} \frac{1}{k!}) > e(4-e) > e(-2+e) > e(-2 + \sum_{k=0}^{i-1} \frac{1}{k!}) \\ &\geqslant \max\{z_i^{\beta_1,...,\beta_{i-1},1}(1); (\beta_1,...,\beta_{i-1},1) \in [-1,1] \times ... \times [-1,1]\} \\ &= \max\{\varphi_i(\beta_1,...,\beta_{i-1},1,\beta_{i+1},...); (\beta_1,...,\beta_{i-1},1,\beta_{i+1},...) \in P\} = m_i \end{split}$$

$$\begin{split} M_i &= \min\{\varphi_i(\beta_1,...,\beta_{i-1},-1,\beta_{i+1},...); (\beta_1,...,\beta_{i-1},-1,\beta_{i+1},...) \in P\} \\ &= \min\{z_i^{\beta_1,...,\beta_{i-1},-1}(1); (\beta_1,...,\beta_{i-1},-1) \in [-1,1] \times ... \times [-1,1]\} \\ &\geqslant e(4 - \sum_{k=0}^{i-1} \frac{1}{k!}) > e(4-e) > e(-2+e) > e(-2 + \sum_{k=0}^{i-1} \frac{1}{k!}) \\ &\geqslant \max\{z_i^{\beta_1,...,\beta_{i-1},1}(1); (\beta_1,...,\beta_{i-1},1) \in [-1,1] \times ... \times [-1,1]\} \\ &= \max\{\varphi_i(\beta_1,...,\beta_{i-1},1,\beta_{i+1},...); (\beta_1,...,\beta_{i-1},1,\beta_{i+1},...) \in P\} = m_i \end{split}$$

for $i \geqslant 2$.

$$M_1=m_1.$$

NDS09, Thessaloniki, Greece

Thus, the sufficient condition implies that for any point

$$z \in [\textit{m}_1, \textit{M}_1] \times [\textit{m}_2, \textit{M}_2] \times ... \subset \mathcal{R}$$

there exist $\beta_i \in [-1,1]$, $i \in \mathbb{N}$,

Thus, the sufficient condition implies that for any point

$$z \in [\textit{m}_1, \textit{M}_1] \times [\textit{m}_2, \textit{M}_2] \times ... \subset \mathcal{R}$$

there exist $\beta_i \in [-1,1]$, $i \in \mathbb{N}$, such that

$$z^{(\beta_1,\beta_2,\ldots)}(1)=z.$$

Thus, the sufficient condition implies that for any point

$$z \in [m_1, M_1] \times [m_2, M_2] \times ... \subset \mathcal{R}$$

there exist $\beta_i \in [-1,1]$, $i \in \mathbb{N}$, such that

$$z^{(\beta_1,\beta_2,\ldots)}(1)=z.$$

In particular, any point

$$z = (z_1, z_2, z_3, ...) \in [e, e] \times [e(-2+e), e(4-e)] \times [e(-2+e), e(4-e)] \times ...$$

has the above property.

Thank you for your attention