Strongly autonomous behaviors over finite rings

Eva Zerz RWTH Aachen University

NDS 2009 Θεσσαλονίκη

~ 1200 Fibonacci: $\sigma^2 y = \sigma y + y$

~ 1200 Fibonacci: $\sigma^2 y = \sigma y + y$

 \sim 1960s Kalman et al: $\sigma x = Ax + Bu$

- ~ 1200 Fibonacci: $\sigma^2 y = \sigma y + y$
- ~ 1960s Kalman et al: $\sigma x = Ax + Bu$
- ~ 1970s Sontag et al: $\sigma x = Ax + Bu$ over rings Roesser, Fornasini et al: 2D state models

- ~ 1200 Fibonacci: $\sigma^2 y = \sigma y + y$
- ~ 1960s Kalman et al: $\sigma x = Ax + Bu$
- ~ 1970s Sontag et al: $\sigma x = Ax + Bu$ over rings Roesser, Fornasini et al: 2D state models
- ~ 1980s Willems et al: $R(\sigma)w = 0$

- ~ 1200 Fibonacci: $\sigma^2 y = \sigma y + y$
- ~ 1960s Kalman et al: $\sigma x = Ax + Bu$
- ~ 1970s Sontag et al: $\sigma x = Ax + Bu$ over rings Roesser, Fornasini et al: 2D state models
- ~ 1980s Willems et al: $R(\sigma)w = 0$

~ 1990s Oberst, Rocha et al: $R(\sigma_1, \ldots, \sigma_n)w = 0$

- ~ 1200 Fibonacci: $\sigma^2 y = \sigma y + y$
- ~ 1960s Kalman et al: $\sigma x = Ax + Bu$
- ~ 1970s Sontag et al: $\sigma x = Ax + Bu$ over rings Roesser, Fornasini et al: 2D state models
- ~ 1980s Willems et al: $R(\sigma)w = 0$
- ~ 1990s Oberst, Rocha et al: $R(\sigma_1, \ldots, \sigma_n)w = 0$
- ~ 2000s Kuijper et al: $R(\sigma)w = 0$ over rings Lu, Nechaev et al: $R(\sigma_1, \ldots, \sigma_n)w = 0$ over rings

Discrete linear systems: Framework

Signals: Sequences $a: T \rightarrow C$

T ... time / index set, here: \mathbb{N}^n C ... signal alphabet, coefficient set

Signal set: $\mathcal{A} = C^T$

Discrete linear systems: Framework

Signals: Sequences $a: T \to C$

 $T \dots$ time / index set, here: \mathbb{N}^n $C \dots$ signal alphabet, coefficient set

Signal set: $A = C^T$

Operators: Shifts $\sigma_i : \mathcal{A} \to \mathcal{A}$ for i = 1, ..., n

$$(\sigma_i a)(t_1,\ldots,t_n) = a(t_1,\ldots,t_i+1,\ldots,t_n)$$

Operator set: $\mathcal{D} = C[\sigma_1, \ldots, \sigma_n]$

Signal set: \mathcal{A} ... sequences $\mathbb{N}^n \to C$ Operator set: \mathcal{D} ... linear shift operators with coeff. in C

Linear system: vector of signals $w \in \mathcal{A}^q$

matrix of operators $R \in \mathcal{D}^{g \times q}$

Rw = 0

linear system of partial difference equations with coeff. in ${\cal C}$

Signal set: \mathcal{A} ... sequences $\mathbb{N}^n \to C$ Operator set: \mathcal{D} ... linear shift operators with coeff. in C

Linear system: vector of signals $w \in \mathcal{A}^q$ matrix of operators $R \in \mathcal{D}^{g \times q}$

Rw = 0

linear system of partial difference equations with coeff. in ${\cal C}$

Behave!

$$\mathcal{B} = \{ w \in \mathcal{A}^q \mid Rw = 0 \}$$

What do we know?

Signals
$$a : \mathbb{N}^n \to \mathbb{C}$$

Operators $d = \sum_{t \in \mathbb{N}^n} c_t \sigma^t$, $c_t \in \mathbb{C}$

What do we know?

Signals $a: \mathbb{N}^n \to \mathbb{C}$ Operators $d = \sum_{t \in \mathbb{N}^n} c_t \sigma^t$, $c_t \in \mathbb{C}$

Well known case: *C* is a field Oberst, Rocha, Valcher, Wood, Z, ...

Continuous counterpart:

Oberst, Pillai & Shankar, Pommaret, Quadrat, ...

What do we know?

Signals $a: \mathbb{N}^n \to \mathbb{C}$ Operators $d = \sum_{t \in \mathbb{N}^n} c_t \sigma^t$, $c_t \in \mathbb{C}$

Well known case: C is a field Oberst, Rocha, Valcher, Wood, Z, ...

Continuous counterpart: Oberst, Pillai & Shankar, Pommaret, Quadrat, ...

Not so well known case: C is a (nice) ring here: $C = \mathbb{Z}_m$, m > 1Sontag, Rouchalau & Wyman, Perdon, Kuijper et al., ...

Why? E.g. Coding theory Fagnani & Zampieri, Nechaev et al., Rosenthal et al., ...

Overview

- 1. Discrete linear systems: History, mathematical framework
- 2. Autonomy in the field case: Short review
- 3. Autonomy in the ring case: Known and new results
- 4. Open problems: Conclusion

Autonomy: Field case

$$F \dots$$
 field, $\mathcal{A} = \{a \mid a : \mathbb{N}^n \to F\}$
 $\mathcal{D} = F[\sigma_1, \dots, \sigma_n], R \in \mathcal{D}^{g \times q}$

Linear system $\mathcal{B} = \{ w \in \mathcal{A}^q \mid Rw = 0 \}$

Autonomy: Field case

 $F \dots$ field, $\mathcal{A} = \{a \mid a : \mathbb{N}^n \to F\}$ $\mathcal{D} = F[\sigma_1, \dots, \sigma_n], R \in \mathcal{D}^{g \times q}$

Linear system
$$\mathcal{B} = \{ w \in \mathcal{A}^q \mid Rw = 0 \}$$

Projection on *i*-th component $\pi_i : \mathcal{B} \to \mathcal{A}, \quad w \mapsto w_i$

 \mathcal{B} autonomous \Leftrightarrow none of the π_i is surjective i.e., there are no free variables (inputs)

Theorem: \mathcal{B} is autonomous $\Leftrightarrow R$ has full column rank

Autonomy: Field case

 $F \dots$ field, $\mathcal{A} = \{a \mid a : \mathbb{N}^n \to F\}$ $\mathcal{D} = F[\sigma_1, \dots, \sigma_n], R \in \mathcal{D}^{g \times q}$

Linear system $\mathcal{B} = \{ w \in \mathcal{A}^q \mid Rw = 0 \}$

Projection on *i*-th component $\pi_i : \mathcal{B} \to \mathcal{A}, \quad w \mapsto w_i$

 \mathcal{B} autonomous \Leftrightarrow none of the π_i is surjective i.e., there are no free variables (inputs)

Theorem: \mathcal{B} is autonomous $\Leftrightarrow R$ has full column rank

Rank: \mathcal{D} domain $\Rightarrow \mathcal{D} \hookrightarrow \mathcal{Q}$ quotient field

Interpretation in terms of trajectories

 $\mathcal{B} = \{ w \in \mathcal{A}^q \mid Rw = 0 \}$

Theorem: [Rocha, Valcher, Wood, Z, ...] Equivalent:

- *B* autonomous (has no free variables)
- R has full column rank

Interpretation in terms of trajectories

 $\mathcal{B} = \{ w \in \mathcal{A}^q \mid Rw = 0 \}$

Theorem: [Rocha, Valcher, Wood, Z, ...] Equivalent:

- *B* autonomous (has no free variables)
- R has full column rank
- $\exists N \in \mathbb{N}^n$: $w \in \mathcal{B}$ has finite support in $N + \mathbb{N}^n \implies w = 0$
- \mathcal{B} past-determined, that is, $\exists N \in \mathbb{N}^n$: $w \in \mathcal{B}$ vanishes on $\mathbb{N}^n \setminus (N + \mathbb{N}^n) \Rightarrow w = 0$

Autonomy: Ring case

$$\mathcal{A} = \{ a \mid a : \mathbb{N}^n \to \mathbb{Z}_m \}$$
$$\mathcal{D} = \mathbb{Z}_m[\sigma_1, \dots, \sigma_n], \ m > 1$$

Autonomy: Ring case

 $\mathcal{A} = \{ a \mid a : \mathbb{N}^n \to \mathbb{Z}_m \}$ $\mathcal{D} = \mathbb{Z}_m[\sigma_1, \dots, \sigma_n], \ m > 1$

Problem: \mathcal{D} is not a domain (unless *m* is prime)

i.e., there are zero-divisors, there is no quotient field

∽→ theory developed so far not directly applicable

Polynomial ring $\mathcal{D} = \mathbb{Z}_m[\sigma_1, \ldots, \sigma_n]$

$$\mathcal{D} \ni d = \sum_{t \in \mathbb{N}^n} d_t \, \sigma_1^{t_1} \cdots \sigma_n^{t_n}$$

- d nilpotent \Leftrightarrow all d_t nilpotent
- $d \text{ zero-divisor} \Leftrightarrow \exists 0 \neq c \in \mathbb{Z}_m$: $c d_t = 0$ for all t
- d unit \Leftrightarrow d_0 unit and all d_t for $t \neq 0$ nilpotent

Degrees of autonomy of $\mathcal{B} = \{ w \in \mathcal{A}^q \mid Rw = 0 \}$

Theorem [NDS 07]:

- $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ has finite support in } N + \mathbb{N}^n \Rightarrow w = 0]$ \Downarrow
- R has full column rank

\Downarrow

• \mathcal{B} has no free variables

But: converse of \Downarrow no longer true, in general!

"Counter" - Examples

$$R = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \in \mathbb{Z}_4^{2 \times 2}$$
$$\mathcal{B} = \{ w : \mathbb{N} \to (\mathbb{Z}_4)^2 \mid 2w = 0 \}$$
has no free variables
but rank(R) < 2

"Counter" - Examples

$$R = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \in \mathbb{Z}_4^{2 \times 2}$$
$$\mathcal{B} = \{ w : \mathbb{N} \to (\mathbb{Z}_4)^2 \mid 2w = 0 \}$$
has no free variables
but rank(R) < 2

$$R = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \in \mathbb{Z}_4^{2 \times 2}$$
$$\mathcal{B} = \{ w : \mathbb{N} \to (\mathbb{Z}_4)^2 \mid w_1 = 0, \ 2w_2 = 0 \}$$
$$\operatorname{rank}(R) = 2$$
but \exists non-zero trajectories with finite support in any $[N, \infty]$

The concept of rank

Clear for domains (embed into quotient field) For arbitrary commutative rings $\mathcal{D} \neq \{0\}$ two notions of rank: determinantal ideals

$$\mathcal{D} := J_0(R) \supseteq J_1(R) \supseteq J_2(R) \supseteq \dots$$

The concept of rank

Clear for domains (embed into quotient field) For arbitrary commutative rings $\mathcal{D} \neq \{0\}$ two notions of rank: determinantal ideals

$$\mathcal{D} := J_0(R) \supseteq J_1(R) \supseteq J_2(R) \supseteq \dots$$

- rank(R) ... largest r such that $J_r(R) \neq 0$
- red-rank(R) ... largest r such that $\operatorname{ann}(J_r(R)) = 0$

The concept of rank

Clear for domains (embed into quotient field) For arbitrary commutative rings $\mathcal{D} \neq \{0\}$ two notions of rank: determinantal ideals

$$\mathcal{D} := J_0(R) \supseteq J_1(R) \supseteq J_2(R) \supseteq \dots$$

- rank(R) ... largest r such that $J_r(R) \neq 0$
- red-rank(R) ... largest r such that $\operatorname{ann}(J_r(R)) = 0$

Examples:
$$R = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \in \mathbb{Z}_4^{2 \times 2}$$
 rank $(R) = 1$ red-rank $(R) = 0$
$$R = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \in \mathbb{Z}_4^{2 \times 2}$$
 rank $(R) = 2$ red-rank $(R) = 1$

Always: red-rank(R) \leq rank(R)

Over domains: red-rank(R) = rank(R)

Always: red-rank(R) \leq rank(R)

Over domains: red-rank(R) = rank(R)

Significance of reduced rank

McCoy's Theorem:

 $\mathcal{D} \neq \{0\}$ commutative ring $R \in \mathcal{D}^{g imes q}$

Then

 $\exists 0 \neq x \in \mathcal{D}^q : Rx = 0 \quad \Leftrightarrow \quad \text{red-rank}(R) < q$

- $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ has finite support in } N + \mathbb{N}^n \Rightarrow w = 0]$
- R has reduced full column rank
- $\exists X \text{ and non-zero-divisor } d: XR = dI_q$

- $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ has finite support in } N + \mathbb{N}^n \Rightarrow w = 0]$
- R has reduced full column rank
- $\exists X \text{ and non-zero-divisor } d: XR = dI_q$

$$\begin{array}{c} & \downarrow \\ R \text{ has full column rank} \\ & \downarrow \\ \exists X \text{ and } 0 \neq d : XR = dI_q \\ & \downarrow \end{array}$$

Theorem: Equivalent:

- $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ has finite support in } N + \mathbb{N}^n \Rightarrow w = 0]$
- R has reduced full column rank
- $\exists X \text{ and non-zero-divisor } d: XR = dI_q$

$$\begin{array}{c} & \downarrow \\ R \text{ has full column rank} \\ & \downarrow \\ \exists X \text{ and } 0 \neq d : XR = dI_q \\ & \downarrow \end{array}$$

- $\bullet \ \mathcal{B}$ has no free variables
- $\exists X \text{ and } 0 \neq d_i : XR = \text{diag}(d_1, \dots, d_q)$

Past-determinedness

- 1. $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ has finite support in } N + \mathbb{N}^n \Rightarrow w = 0]$
- 2. R has reduced full column rank
- 3. $\exists X \text{ and non-zero-divisor } d: XR = dI$

Past-determinedness

Theorem: Equivalent:

1. $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ has finite support in } N + \mathbb{N}^n \Rightarrow w = 0]$

- 2. R has reduced full column rank
- 3. $\exists X \text{ and non-zero-divisor } d: XR = dI$
- **4.** $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ vanishes on } \mathbb{N}^n \setminus (N + \mathbb{N}^n) \Rightarrow w = 0]$

[NDS 07]: $1 \Leftrightarrow 2 \Leftrightarrow 3$ Clearly: $4 \Rightarrow 1$ Crucial part: $3 \Rightarrow 4$ Past-determinedness

Theorem: Equivalent:

1. $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ has finite support in } N + \mathbb{N}^n \Rightarrow w = 0]$

- 2. R has reduced full column rank
- 3. $\exists X \text{ and non-zero-divisor } d: XR = dI$
- **4.** $\exists N \in \mathbb{N}^n$: $[w \in \mathcal{B} \text{ vanishes on } \mathbb{N}^n \setminus (N + \mathbb{N}^n) \Rightarrow w = 0]$

[NDS 07]: $1 \Leftrightarrow 2 \Leftrightarrow 3$ Clearly: $4 \Rightarrow 1$ Crucial part: $3 \Rightarrow 4$

Lemma: $d \in \mathcal{D} = \mathbb{Z}_m[\sigma_1, \dots, \sigma_n]$ non-zero-divisor \Rightarrow some multiple of d is monic (w.r.t. a chosen term order)

• Constructive aspects: effective Gröbner basis theory over \mathbb{Z}_m (recent release of Singular 3-1-0 admits GB computation)

- Constructive aspects: effective Gröbner basis theory over \mathbb{Z}_m (recent release of Singular 3-1-0 admits GB computation)
- Well-posed initial value problems for past-determined systems

- Constructive aspects: effective Gröbner basis theory over \mathbb{Z}_m (recent release of Singular 3-1-0 admits GB computation)
- Well-posed initial value problems for past-determined systems

• \mathbb{Z}_m -module structure of \mathcal{B} , e.g., finitely generated?

- Constructive aspects: effective Gröbner basis theory over \mathbb{Z}_m (recent release of Singular 3-1-0 admits GB computation)
- Well-posed initial value problems for past-determined systems

- \mathbb{Z}_m -module structure of \mathcal{B} , e.g., finitely generated?
- Generalization of finite-dim. behaviors over fields

• Reasonably well understood:

 $\mathcal{D}=F[\sigma_1,\ldots,\sigma_n] \quad \text{and} \quad \mathcal{A}=\{a~|~a:\mathbb{N}^n\to F\}$ where F is a field

• Reasonably well understood:

 $\mathcal{D} = F[\sigma_1, \dots, \sigma_n] \quad \text{and} \quad \mathcal{A} = \{a \mid a : \mathbb{N}^n \to F\}$

where F is a field

Autonomy:
 no free variables ⇔ fcr ⇔ past-determined

• Reasonably well understood:

 $\mathcal{D} = F[\sigma_1, \dots, \sigma_n] \quad \text{and} \quad \mathcal{A} = \{a \mid a : \mathbb{N}^n \to F\}$

where F is a field

- Autonomy:
 no free variables ⇔ fcr ⇔ past-determined
- Applications in coding \rightsquigarrow replace field F by more general rings, here: \mathbb{Z}_m

• Reasonably well understood:

 $\mathcal{D} = F[\sigma_1, \dots, \sigma_n] \quad \text{and} \quad \mathcal{A} = \{a \mid a : \mathbb{N}^n \to F\}$

where F is a field

- Autonomy:
 no free variables ⇔ fcr ⇔ past-determined
- Applications in coding \rightsquigarrow replace field F by more general rings, here: \mathbb{Z}_m
- Autonomy:

no free variables \Leftarrow fcr \Leftarrow past-determined \Leftrightarrow red-fcr