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∼ 1200 Fibonacci: σ2y = σy + y

∼ 1960s Kalman et al: σx = Ax+Bu

∼ 1970s Sontag et al: σx = Ax+Bu over rings

Roesser, Fornasini et al: 2D state models

∼ 1980s Willems et al: R(σ)w = 0

∼ 1990s Oberst, Rocha et al: R(σ1, . . . , σn)w = 0

∼ 2000s Kuijper et al: R(σ)w = 0 over rings

Lu, Nechaev et al: R(σ1, . . . , σn)w = 0 over rings
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Discrete linear systems: Framework

Signals: Sequences a : T → C

T . . . time / index set, here: Nn

C . . . signal alphabet, coefficient set

Signal set: A = CT

Operators: Shifts σi : A → A for i = 1, . . . , n

(σia)(t1, . . . , tn) = a(t1, . . . , ti + 1, . . . , tn)

Operator set: D = C[σ1, . . . , σn]
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Signal set: A . . . sequences Nn → C

Operator set: D . . . linear shift operators with coeff. in C

Linear system:

vector of signals w ∈ Aq

matrix of operators R ∈ Dg×q

Rw = 0

linear system of partial difference equations with coeff. in C

Behave!

B = {w ∈ Aq | Rw = 0}
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What do we know?

Signals a : Nn → C
Operators d =

∑
t∈Nn

ctσ
t, ct ∈ C

Well known case: C is a field
Oberst, Rocha, Valcher, Wood, Z, . . .

Continuous counterpart:
Oberst, Pillai & Shankar, Pommaret, Quadrat, . . .

Not so well known case: C is a (nice) ring
here: C = Zm, m > 1
Sontag, Rouchalau & Wyman, Perdon, Kuijper et al., . . .

Why? E.g. Coding theory
Fagnani & Zampieri, Nechaev et al., Rosenthal et al., . . .



Overview

• 1. Discrete linear systems: History, mathematical framework

• 2. Autonomy in the field case: Short review

• 3. Autonomy in the ring case: Known and new results

• 4. Open problems: Conclusion
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Autonomy: Field case

F . . . field, A = {a | a : Nn → F}
D = F [σ1, . . . , σn], R ∈ Dg×q

Linear system B = {w ∈ Aq | Rw = 0}

Projection on i-th component πi : B → A, w 7→ wi

B autonomous ⇔ none of the πi is surjective

i.e., there are no free variables (inputs)

Theorem: B is autonomous ⇔ R has full column rank

Rank: D domain ⇒ D ↪→ Q quotient field
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Interpretation in terms of trajectories

B = {w ∈ Aq | Rw = 0}

Theorem: [Rocha, Valcher, Wood, Z, . . . ] Equivalent:

• B autonomous (has no free variables)

• R has full column rank

• ∃N ∈ Nn :

w ∈ B has finite support in N + Nn ⇒ w = 0

• B past-determined, that is, ∃N ∈ Nn:

w ∈ B vanishes on Nn \ (N + Nn) ⇒ w = 0
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Autonomy: Ring case

A = {a | a : Nn → Zm}
D = Zm[σ1, . . . , σn], m > 1

Problem: D is not a domain (unless m is prime)

i.e., there are zero-divisors, there is no quotient field . . .

 theory developed so far not directly applicable



Polynomial ring D = Zm[σ1, . . . , σn]

D 3 d =
∑
t∈Nn

dt σ
t1
1 · · ·σ

tn
n

• d nilpotent ⇔ all dt nilpotent

• d zero-divisor ⇔ ∃0 6= c ∈ Zm: c dt = 0 for all t

• d unit ⇔ d0 unit and all dt for t 6= 0 nilpotent



Degrees of autonomy of B = {w ∈ Aq | Rw = 0}

Theorem [NDS 07]:

• ∃N ∈ Nn: [w ∈ B has finite support in N + Nn ⇒ w = 0]

⇓

• R has full column rank

⇓

• B has no free variables

But: converse of ⇓ no longer true, in general!
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R =

[
1 0
0 2

]
∈ Z2×2

4

B = {w : N→ (Z4)2 | w1 = 0, 2w2 = 0}
rank(R) = 2

but ∃ non-zero trajectories with finite support in any [N,∞)
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The concept of rank

Clear for domains (embed into quotient field)
For arbitrary commutative rings D 6= {0} two notions of rank:
determinantal ideals

D =: J0(R) ⊇ J1(R) ⊇ J2(R) ⊇ . . .

• rank(R) . . . largest r such that Jr(R) 6= 0

• red-rank(R) . . . largest r such that ann(Jr(R)) = 0

Examples: R =

[
2 0
0 2

]
∈ Z2×2

4 rank(R) = 1 red-rank(R) = 0

R =

[
1 0
0 2

]
∈ Z2×2

4 rank(R) = 2 red-rank(R) = 1
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Always: red-rank(R) ≤ rank(R)

Over domains: red-rank(R) = rank(R)

Significance of reduced rank

McCoy’s Theorem:

D 6= {0} commutative ring

R ∈ Dg×q

Then

∃0 6= x ∈ Dq : Rx = 0 ⇔ red-rank(R) < q
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Theorem: Equivalent:

• ∃N ∈ Nn: [w ∈ B has finite support in N + Nn ⇒ w = 0]

• R has reduced full column rank

• ∃X and non-zero-divisor d: XR = dIq

⇓
R has full column rank

⇓
∃X and 0 6= d : XR = dIq

⇓
Theorem: Equivalent:

• B has no free variables

• ∃X and 0 6= di: XR = diag(d1, . . . , dq)
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Past-determinedness

Theorem: Equivalent:

1. ∃N ∈ Nn: [w ∈ B has finite support in N + Nn ⇒ w = 0]

2. R has reduced full column rank

3. ∃X and non-zero-divisor d: XR = dI

4. ∃N ∈ Nn: [w ∈ B vanishes on Nn \ (N + Nn) ⇒ w = 0]

[NDS 07]: 1 ⇔ 2 ⇔ 3

Clearly: 4 ⇒ 1

Crucial part: 3 ⇒ 4

Lemma: d ∈ D = Zm[σ1, . . . , σn] non-zero-divisor ⇒
some multiple of d is monic (w.r.t. a chosen term order)
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Open problems

• Constructive aspects: effective Gröbner basis theory over Zm
(recent release of Singular 3-1-0 admits GB computation)

• Well-posed initial value problems for past-determined systems

• Zm-module structure of B, e.g., finitely generated?

• Generalization of finite-dim. behaviors over fields



Conclusion

• Reasonably well understood:

D = F [σ1, . . . , σn] and A = {a | a : Nn → F}

where F is a field



Conclusion

• Reasonably well understood:

D = F [σ1, . . . , σn] and A = {a | a : Nn → F}

where F is a field

• Autonomy:

no free variables ⇔ fcr ⇔ past-determined



Conclusion

• Reasonably well understood:

D = F [σ1, . . . , σn] and A = {a | a : Nn → F}

where F is a field

• Autonomy:

no free variables ⇔ fcr ⇔ past-determined

• Applications in coding  
replace field F by more general rings, here: Zm



Conclusion

• Reasonably well understood:

D = F [σ1, . . . , σn] and A = {a | a : Nn → F}

where F is a field

• Autonomy:

no free variables ⇔ fcr ⇔ past-determined

• Applications in coding  
replace field F by more general rings, here: Zm

• Autonomy:

no free variables ⇐ fcr ⇐ past-determined ⇔ red-fcr


