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Discrete linear systems: Historyl

~ 1200 Fibonacci: 02y =oy+vy
~ 1960s Kalman et al: ocx = Ax + Bu

~ 1970s Sontag et al: ox = Ax + Bu over rings
Roesser, Fornasini et al: 2D state models

~ 1980s Willems et al: R(oc)w =0
~ 1990s Oberst, Rocha et al: R(o1,...,0n)w =0

~ 2000s Kuijper et al: R(o)w = 0 over rings
Lu, Nechaev et al: R(o1,...,0n)w = 0 over rings
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Discrete linear systems: Frameworkl

Signals: Sequences a:71T — C

T ... time / index set, N7
C ... signal alphabet, coefficient set

Signal set: A =7

Operators: Shifts o;,: A— A forie=1,...,n

(og;a)(t1,...,tn) = a(ty,...,t; +1,...

Operator set: D =C[o1,...,0n]
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Signal set: A ... sequences N*" — C
Operator set: D ... linear shift operators with coeff. in C

Linear system:
vector of signals w € A4
matrix of operators R € DI*4

Rw =20

linear system of partial difference equations with coeff. in C

Behave!

B={we A?| Rw= 0}
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What do we know?

Signals a: Nt — C
Operators d= Y ¢ot, ¢, €C
teN”

Well known case: (' is a field
Oberst, Rocha, Valcher, Wood, Z, ...

Continuous counterpart:
Oberst, Pillai & Shankar, Pommaret, Quadrat, ...

Not so well known case: C is a (nice) ring
nhere: C' = 4Zm, m>1
Sontag, Rouchalau & Wyman, Perdon, Kuijper et al., ...

Why? E.g. Coding theory
Fagnani & Zampieri, Nechaev et al., Rosenthal et al., ...



Overview|

1. Discrete linear systems: History, mathematical framework
2. Autonomy in the field case: Short review
3. Autonomy in the ring case: Known and new results

4. Open problems: Conclusion
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Autonomy: Field case |

F ... field, A={a | a:N*"— F}
D= Floy,...,on], R € DI¥T

Linear system B = {w € A? | Rw = 0}
Projection on i-th component m,: B — A, w— w;

B autonomous < none of the w; is surjective
i.e., there are no free variables (inputs)

T heorem: B is autonomous < R has full column rank

Rank: D domain = D — O quotient field
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Interpretation in terms of trajectories
B={we A? | Rw = 0}

Theorem: [Rocha, Valcher, Wood, Z, ...] Equivalent:

e B autonomous (has no free variables)
e R has full column rank

e JN € N :
w € B has finite support in N+ N?* = w=0

e B past-determined, that is, 3N € N":
w € B vanishes on N\ (N +N") = w =0
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Autonomy: RiNng casel

A={a | a:N"— Zp,}
D:Zm[al,...,gn], m>1

Problem: D is not a domain
i.e., there are zero-divisors, there is no quotient field . ..

~» theory developed so far not directly applicable



Polynomial ring D = Zm|o1,...,0n]

t
D>d= ) dtall---afln
teNn
e d nilpotent & all d; nilpotent
e d zero-divisor & 40 £ c € Zm: cdy = 0 for all ¢

e d unit & dp unit and all d; for t = O nilpotent



Degrees of autonomy of B = {w € A? | Rw = 0}

Theorem [NDS 07]:

e JN € N": [w € B has finite support in N +N" = w = 0]
N2

e R has full column rank

U

e 5 has no free variables

But: converse of || no longer true, in general!
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“Counter’ -Examples

— 2 0 2X2
r=[2 9]ez
B={w:N— (Z4)? | 2w = 0}
has no free variables
but rank(R) < 2
_ 110 2% 2
R = [O 5 | €%4

B={w:N— (Z4)? | wy =0, 2wy, = 0}
rank(R) = 2
but 3 non-zero trajectories with finite support in any [N, co)
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The concept of rank
Clear for domains (embed into quotient field)

For arbitrary commutative rings D # {0} two notions of rank:
determinantal ideals

D =:Jo(R) 2 J1(R) 2 Jo(R) 2 ...

e rank(R) ... largest r such that J.(R) #0
e red-rank(R) ... largest r such that ann(J,(R)) =0

Examples: R = [ g g ] c 73*? rank(R) =1 red-rank(R) =0

R= [ (1) g ] € 72*? rank(R) =2 red-rank(R) =1
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Always: red-rank(R) < rank(R)

Over domains: red-rank(R) = rank(R)

Significance of reduced rank
McCoy's Theorem:

D # {0} commutative ring
R € DI*4

T hen

0#zcD!:Re=0 &

red-rank(R) < q
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Theorem: Equivalent:

e dN € N [w € B has finite support in N +N" = w = 0]
e R has reduced full column rank
e JX and non-zero-divisor d: XR = dl

I

R has full column rank
I

JdX and 0 #=d: XR =dlq
|2

Theorem: Equivalent:

e /3 has no free variables
e 1X and 0 #d;: XR = diag(dl, .. .,dq)
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Past-determinedness

Theorem: Equivalent:

1. AN € N": [w € B has finite support in N 4+ N" = w = 0]
2. R has reduced full column rank

3. dX and non-zero-divisor d:. XR = dI

4. 3N € N"™: [w € B vanishes on N*\ (N +N") = w = Q]

INDS 07]: 1 & 2 & 3
Clearly: 4 = 1
Crucial part: 3 = 4

Lemma: d € D = Zm|o1,...,on] NOn-zero-divisor =
some multiple of d is monic (w.r.t. a chosen term order)
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Open problemsl

e Constructive aspects: effective Grobner basis theory over Z,,
e \Well-posed initial value problems for past-determined systems

o Zm-module structure of B, e.qg., finitely generated?

e Generalization of finite-dim. behaviors over fields
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Conclusion|

Reasonably well understood:

D= Flo1,...,on] and A={a|a:N'— F}

where F' is a field

Autonomy:
no free variables < fcr & past-determined

Applications in coding ~~
replace field F' by more general rings, here: Zm

Autonomy:
no free variables < fcr <= past-determined < red-fcr



