Strongly autonomous behaviors over finite rings

Eva Zerz
RWTH Aachen University

NDS 2009
Є $\varepsilon \sigma \sigma \alpha \lambda о \nu$ и́к η

Discrete linear systems: History

~ 1200 Fibonacci: $\sigma^{2} y=\sigma y+y$

Discrete linear systems: History

~ 1200 Fibonacci: $\sigma^{2} y=\sigma y+y$
\sim 1960s Kalman et al: $\sigma x=A x+B u$

Discrete linear systems: History

~ 1200 Fibonacci: $\sigma^{2} y=\sigma y+y$
\sim 1960s Kalman et al: $\sigma x=A x+B u$
\sim 1970s Sontag et al: $\sigma x=A x+B u$ over rings Roesser, Fornasini et al: 2D state models

Discrete linear systems: History

~ 1200 Fibonacci: $\sigma^{2} y=\sigma y+y$
\sim 1960s Kalman et al: $\sigma x=A x+B u$
\sim 1970s Sontag et al: $\sigma x=A x+B u$ over rings Roesser, Fornasini et al: 2D state models
~ 1980 s Willems et al: $R(\sigma) w=0$

Discrete linear systems: History

~ 1200 Fibonacci: $\sigma^{2} y=\sigma y+y$
\sim 1960s Kalman et al: $\sigma x=A x+B u$
\sim 1970s Sontag et al: $\sigma x=A x+B u$ over rings Roesser, Fornasini et al: 2D state models
~ 1980 s Willems et al: $R(\sigma) w=0$
~ 1990 s Oberst, Rocha et al: $R\left(\sigma_{1}, \ldots, \sigma_{n}\right) w=0$

Discrete linear systems: History

~ 1200 Fibonacci: $\sigma^{2} y=\sigma y+y$
\sim 1960s Kalman et al: $\sigma x=A x+B u$
\sim 1970s Sontag et al: $\sigma x=A x+B u$ over rings Roesser, Fornasini et al: 2D state models
\sim 1980s Willems et al: $R(\sigma) w=0$
\sim 1990s Oberst, Rocha et al: $R\left(\sigma_{1}, \ldots, \sigma_{n}\right) w=0$
~2000s Kuijper et al: $R(\sigma) w=0$ over rings
Lu, Nechaev et al: $R\left(\sigma_{1}, \ldots, \sigma_{n}\right) w=0$ over rings

Discrete linear systems: Framework

Signals: Sequences $a: T \rightarrow C$
T... time / index set, here: \mathbb{N}^{n}
C ... signal alphabet, coefficient set
Signal set: $\mathcal{A}=C^{T}$

Discrete linear systems: Framework

Signals: Sequences $a: T \rightarrow C$
T... time / index set, here: \mathbb{N}^{n}
C... signal alphabet, coefficient set
Signal set: $\mathcal{A}=C^{T}$

Operators: Shifts $\sigma_{i}: \mathcal{A} \rightarrow \mathcal{A}$ for $i=1, \ldots, n$

$$
\left(\sigma_{i} a\right)\left(t_{1}, \ldots, t_{n}\right)=a\left(t_{1}, \ldots, t_{i}+1, \ldots, t_{n}\right)
$$

Operator set: $\mathcal{D}=C\left[\sigma_{1}, \ldots, \sigma_{n}\right]$

Signal set: $\quad \mathcal{A} \ldots$ sequences $\mathbb{N}^{n} \rightarrow C$
Operator set: $\mathcal{D} \ldots$ linear shift operators with coeff. in C

Linear system:
vector of signals $w \in \mathcal{A}^{q}$
matrix of operators $R \in \mathcal{D}^{g \times q}$

$$
R w=0
$$

linear system of partial difference equations with coeff. in C

Signal set: $\mathcal{A} \ldots$ sequences $\mathbb{N}^{n} \rightarrow C$
Operator set: $\mathcal{D} \ldots$ linear shift operators with coeff. in C

Linear system:
vector of signals $w \in \mathcal{A}^{q}$
matrix of operators $R \in \mathcal{D}^{g \times q}$

$$
R w=0
$$

linear system of partial difference equations with coeff. in C

Behave!

$$
\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}
$$

What do we know?
Signals $a: \mathbb{N}^{n} \rightarrow C$
Operators $d=\sum_{t \in \mathbb{N}^{n}} c_{t} \sigma^{t}, c_{t} \in C$

What do we know?
Signals $a: \mathbb{N}^{n} \rightarrow C$
Operators $d=\sum_{t \in \mathbb{N}^{n}} c_{t} \sigma^{t}, c_{t} \in C$
Well known case: C is a field
Oberst, Rocha, Valcher, Wood, Z, ...
Continuous counterpart:
Oberst, Pillai \& Shankar, Pommaret, Quadrat, ...

What do we know?
Signals $a: \mathbb{N}^{n} \rightarrow C$
Operators $d=\sum_{t \in \mathbb{N}^{n}} c_{t} \sigma^{t}, c_{t} \in C$
Well known case: C is a field
Oberst, Rocha, Valcher, Wood, Z, ...
Continuous counterpart:
Oberst, Pillai \& Shankar, Pommaret, Quadrat, . . .
Not so well known case: C is a (nice) ring
here: $C=\mathbb{Z}_{m}, m>1$
Sontag, Rouchalau \& Wyman, Perdon, Kuijper et al., ...
Why? E.g. Coding theory
Fagnani \& Zampieri, Nechaev et al., Rosenthal et al., ...

Overview

- 1. Discrete linear systems: History, mathematical framework
- 2. Autonomy in the field case: Short review
- 3. Autonomy in the ring case: Known and new results
- 4. Open problems: Conclusion

Autonomy: Field case

$F \ldots$ field, $\mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow F\right\}$
$\mathcal{D}=F\left[\sigma_{1}, \ldots, \sigma_{n}\right], R \in \mathcal{D}^{g \times q}$
Linear system $\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}$

Autonomy: Field case

$F \ldots$ field, $\mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow F\right\}$
$\mathcal{D}=F\left[\sigma_{1}, \ldots, \sigma_{n}\right], R \in \mathcal{D}^{g \times q}$
Linear system $\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}$

Projection on i-th component $\quad \pi_{i}: \mathcal{B} \rightarrow \mathcal{A}, \quad w \mapsto w_{i}$
\mathcal{B} autonomous \Leftrightarrow none of the π_{i} is surjective
i.e., there are no free variables (inputs)

Theorem: \mathcal{B} is autonomous $\Leftrightarrow R$ has full column rank

Autonomy: Field case

$F \ldots$ field, $\mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow F\right\}$
$\mathcal{D}=F\left[\sigma_{1}, \ldots, \sigma_{n}\right], R \in \mathcal{D}^{g \times q}$
Linear system $\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}$
Projection on i-th component $\quad \pi_{i}: \mathcal{B} \rightarrow \mathcal{A}, \quad w \mapsto w_{i}$
\mathcal{B} autonomous \Leftrightarrow none of the π_{i} is surjective
i.e., there are no free variables (inputs)

Theorem: \mathcal{B} is autonomous $\Leftrightarrow R$ has full column rank

Rank: \mathcal{D} domain $\Rightarrow \mathcal{D} \hookrightarrow \mathcal{Q}$ quotient field

Interpretation in terms of trajectories
$\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}$
Theorem: [Rocha, Valcher, Wood, Z, ...] Equivalent:

- \mathcal{B} autonomous (has no free variables)
- R has full column rank

Interpretation in terms of trajectories
$\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}$
Theorem: [Rocha, Valcher, Wood, Z, ...] Equivalent:

- \mathcal{B} autonomous (has no free variables)
- R has full column rank
- $\exists N \in \mathbb{N}^{n}$:
$w \in \mathcal{B}$ has finite support in $N+\mathbb{N}^{n} \Rightarrow w=0$
- \mathcal{B} past-determined, that is, $\exists N \in \mathbb{N}^{n}$:
$w \in \mathcal{B}$ vanishes on $\mathbb{N}^{n} \backslash\left(N+\mathbb{N}^{n}\right) \Rightarrow w=0$

Autonomy: Ring case

$$
\begin{aligned}
& \mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow \mathbb{Z}_{m}\right\} \\
& \mathcal{D}=\mathbb{Z}_{m}\left[\sigma_{1}, \ldots, \sigma_{n}\right], m>1
\end{aligned}
$$

Autonomy: Ring case

$\mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow \mathbb{Z}_{m}\right\}$
$\mathcal{D}=\mathbb{Z}_{m}\left[\sigma_{1}, \ldots, \sigma_{n}\right], m>1$

Problem: \mathcal{D} is not a domain (unless m is prime)
i.e., there are zero-divisors, there is no quotient field ...
\rightsquigarrow theory developed so far not directly applicable

Polynomial ring $\mathcal{D}=\mathbb{Z}_{m}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$

$$
\mathcal{D} \ni d=\sum_{t \in \mathbb{N}^{n}} d_{t} \sigma_{1}^{t_{1}} \cdots \sigma_{n}^{t_{n}}
$$

- d nilpotent \Leftrightarrow all d_{t} nilpotent
- d zero-divisor $\Leftrightarrow \exists 0 \neq c \in \mathbb{Z}_{m}: c d_{t}=0$ for all t
- d unit $\Leftrightarrow d_{0}$ unit and all d_{t} for $t \neq 0$ nilpotent

Degrees of autonomy of $\mathcal{B}=\left\{w \in \mathcal{A}^{q} \mid R w=0\right\}$
Theorem [NDS 07]:

- $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ has finite support in $\left.N+\mathbb{N}^{n} \Rightarrow w=0\right]$ \Downarrow
- R has full column rank

$$
\Downarrow
$$

- \mathcal{B} has no free variables

But: converse of \Downarrow no longer true, in general!
"Counter"-Examples

$$
R=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \in \mathbb{Z}_{4}^{2 \times 2}
$$

$\mathcal{B}=\left\{w: \mathbb{N} \rightarrow\left(\mathbb{Z}_{4}\right)^{2} \mid 2 w=0\right\}$
has no free variables
but $\operatorname{rank}(R)<2$
"Counter"-Examples

$$
\begin{aligned}
& \qquad R=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \in \mathbb{Z}_{4}^{2 \times 2} \\
& \mathcal{B}=\left\{w: \mathbb{N} \rightarrow\left(\mathbb{Z}_{4}\right)^{2} \mid 2 w=0\right\} \\
& \text { has no free variables } \\
& \text { but rank }(R)<2
\end{aligned}
$$

$$
R=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \in \mathbb{Z}_{4}^{2 \times 2}
$$

$$
\mathcal{B}=\left\{w: \mathbb{N} \rightarrow\left(\mathbb{Z}_{4}\right)^{2} \mid w_{1}=0,2 w_{2}=0\right\}
$$

$$
\operatorname{rank}(R)=2
$$

but \exists non-zero trajectories with finite support in any $[N, \infty)$

The concept of rank
Clear for domains (embed into quotient field) For arbitrary commutative rings $\mathcal{D} \neq\{0\}$ two notions of rank: determinantal ideals

$$
\mathcal{D}=: J_{0}(R) \supseteq J_{1}(R) \supseteq J_{2}(R) \supseteq \ldots
$$

The concept of rank

Clear for domains (embed into quotient field) For arbitrary commutative rings $\mathcal{D} \neq\{0\}$ two notions of rank: determinantal ideals

$$
\mathcal{D}=: J_{0}(R) \supseteq J_{1}(R) \supseteq J_{2}(R) \supseteq \ldots
$$

- $\operatorname{rank}(R)$... largest r such that $J_{r}(R) \neq 0$
- red-rank (R)... largest r such that ann $\left(J_{r}(R)\right)=0$

The concept of rank

Clear for domains (embed into quotient field)
For arbitrary commutative rings $\mathcal{D} \neq\{0\}$ two notions of rank: determinantal ideals

$$
\mathcal{D}=: J_{0}(R) \supseteq J_{1}(R) \supseteq J_{2}(R) \supseteq \ldots
$$

- $\operatorname{rank}(R)$... largest r such that $J_{r}(R) \neq 0$
- red-rank $(R) \ldots$ largest r such that $\operatorname{ann}\left(J_{r}(R)\right)=0$

Examples: $R=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \in \mathbb{Z}_{4}^{2 \times 2} \quad \operatorname{rank}(R)=1 \quad \operatorname{red}-\operatorname{rank}(R)=0$

$$
R=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \in \mathbb{Z}_{4}^{2 \times 2} \quad \operatorname{rank}(R)=2 \quad \operatorname{red}-\operatorname{rank}(R)=1
$$

Always: $\operatorname{red}-\operatorname{rank}(R) \leq \operatorname{rank}(R)$

Over domains: red-rank $(R)=\operatorname{rank}(R)$

Always: $\operatorname{red}-\operatorname{rank}(R) \leq \operatorname{rank}(R)$

Over domains: red-rank $(R)=\operatorname{rank}(R)$

Significance of reduced rank

McCoy's Theorem:
$\mathcal{D} \neq\{0\}$ commutative ring
$R \in \mathcal{D}^{g \times q}$

Then

$$
\exists 0 \neq x \in \mathcal{D}^{q}: R x=0 \quad \Leftrightarrow \quad \operatorname{red}-\operatorname{rank}(R)<q
$$

Theorem: Equivalent:

- $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ has finite support in $\left.N+\mathbb{N}^{n} \Rightarrow w=0\right]$
- R has reduced full column rank
- $\exists X$ and non-zero-divisor $d: X R=d I_{q}$

Theorem: Equivalent:

- $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ has finite support in $\left.N+\mathbb{N}^{n} \Rightarrow w=0\right]$
- R has reduced full column rank
- $\exists X$ and non-zero-divisor $d: X R=d I_{q}$

$$
\begin{gathered}
\Downarrow \\
R \text { has full column rank } \\
\Downarrow \\
\exists X \text { and } 0 \neq d: X R=d I_{q} \\
\Downarrow
\end{gathered}
$$

Theorem: Equivalent:

- $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ has finite support in $\left.N+\mathbb{N}^{n} \Rightarrow w=0\right]$
- R has reduced full column rank
- $\exists X$ and non-zero-divisor $d: X R=d I_{q}$

Theorem: Equivalent:

- \mathcal{B} has no free variables
- $\exists X$ and $0 \neq d_{i}: X R=\operatorname{diag}\left(d_{1}, \ldots, d_{q}\right)$

Past-determinedness

Theorem: Equivalent:

1. $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ has finite support in $\left.N+\mathbb{N}^{n} \Rightarrow w=0\right]$
2. R has reduced full column rank
3. $\exists X$ and non-zero-divisor $d: X R=d I$

Past-determinedness

Theorem: Equivalent:

1. $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ has finite support in $\left.N+\mathbb{N}^{n} \Rightarrow w=0\right]$
2. R has reduced full column rank
3. $\exists X$ and non-zero-divisor $d: X R=d I$
4. $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ vanishes on $\left.\mathbb{N}^{n} \backslash\left(N+\mathbb{N}^{n}\right) \Rightarrow w=0\right]$
[NDS 07]: $1 \Leftrightarrow 2 \Leftrightarrow 3$
Clearly: $4 \Rightarrow 1$
Crucial part: $3 \Rightarrow 4$

Past-determinedness

Theorem: Equivalent:

1. $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ has finite support in $\left.N+\mathbb{N}^{n} \Rightarrow w=0\right]$
2. R has reduced full column rank
3. $\exists X$ and non-zero-divisor $d: X R=d I$
4. $\exists N \in \mathbb{N}^{n}:\left[w \in \mathcal{B}\right.$ vanishes on $\left.\mathbb{N}^{n} \backslash\left(N+\mathbb{N}^{n}\right) \Rightarrow w=0\right]$
[NDS 07]: $1 \Leftrightarrow 2 \Leftrightarrow 3$
Clearly: $4 \Rightarrow 1$
Crucial part: $3 \Rightarrow 4$

Lemma: $d \in \mathcal{D}=\mathbb{Z}_{m}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ non-zero-divisor \Rightarrow some multiple of d is monic (w.r.t. a chosen term order)

Open problems

- Constructive aspects: effective Gröbner basis theory over \mathbb{Z}_{m} (recent release of Singular 3-1-0 admits GB computation)

Open problems

- Constructive aspects: effective Gröbner basis theory over \mathbb{Z}_{m} (recent release of Singular 3-1-0 admits GB computation)
- Well-posed initial value problems for past-determined systems

Open problems

- Constructive aspects: effective Gröbner basis theory over \mathbb{Z}_{m} (recent release of Singular 3-1-0 admits GB computation)
- Well-posed initial value problems for past-determined systems
- \mathbb{Z}_{m}-module structure of \mathcal{B}, e.g., finitely generated?

Open problems

- Constructive aspects: effective Gröbner basis theory over \mathbb{Z}_{m} (recent release of Singular 3-1-0 admits GB computation)
- Well-posed initial value problems for past-determined systems
- \mathbb{Z}_{m}-module structure of \mathcal{B}, e.g., finitely generated?
- Generalization of finite-dim. behaviors over fields

Conclusion

- Reasonably well understood:

$$
\mathcal{D}=F\left[\sigma_{1}, \ldots, \sigma_{n}\right] \quad \text { and } \quad \mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow F\right\}
$$

where F is a field

Conclusion

- Reasonably well understood:

$$
\mathcal{D}=F\left[\sigma_{1}, \ldots, \sigma_{n}\right] \quad \text { and } \quad \mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow F\right\}
$$

where F is a field

- Autonomy:
no free variables \Leftrightarrow fcr \Leftrightarrow past-determined

Conclusion

- Reasonably well understood:

$$
\mathcal{D}=F\left[\sigma_{1}, \ldots, \sigma_{n}\right] \quad \text { and } \quad \mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow F\right\}
$$

where F is a field

- Autonomy: no free variables \Leftrightarrow fcr \Leftrightarrow past-determined
- Applications in coding \rightsquigarrow replace field F by more general rings, here: \mathbb{Z}_{m}

Conclusion

- Reasonably well understood:

$$
\mathcal{D}=F\left[\sigma_{1}, \ldots, \sigma_{n}\right] \quad \text { and } \quad \mathcal{A}=\left\{a \mid a: \mathbb{N}^{n} \rightarrow F\right\}
$$

where F is a field

- Autonomy:
no free variables \Leftrightarrow fcr \Leftrightarrow past-determined
- Applications in coding \rightsquigarrow replace field F by more general rings, here: \mathbb{Z}_{m}
- Autonomy: no free variables $\Leftarrow \mathrm{fcr} \Leftarrow$ past-determined \Leftrightarrow red-fcr

