# Approximation of $n \mathrm{D}$ systems using Tensor Decompositions 

Femke van Belzen and Siep Weiland

Department of Electrical Engineering Eindhoven University of Technology

June 29, 2009

## Motivation

## Model-based process control

- Focus on dynamic behavior of the process
- Examples: crystallization, distillation, glass manufacturing, polymerization, etc.
- Both space and time as independent variables
- Models described by PDEs
- Accurate
- Analytical solutions unknown/hard to compute
- Finite Element (FE) solutions: time-consuming


## Problem formulation

Model

$$
R\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{N}}\right) w=0
$$

$R \in \mathbb{R}^{\times 1}\left[\xi_{1}, \ldots, \xi_{N}\right]$ : real matrix-valued polynomial $w\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}$ : signal, $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{X}$

Model reduction method should:

- Preserve $n$ D structure of original system
- Capture system dynamics relevant for control


## Problem formulation

FEM/FVM gives

$$
D\left(\varsigma_{1}, \ldots, \varsigma_{N}\right) w=0
$$

$D \in \mathbb{R}^{\times 1}\left[\xi_{1}, \ldots, \xi_{N}\right]$ : real matrix-valued polynomial
$\varsigma_{n}$ : forward shift operator, acting on $n$th mode $w\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}$ : signal, $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{X}$

Model reduction method should:

- Preserve $n$ D structure of original system
- Capture system dynamics relevant for control
- Retain original mesh configuration


## Proper Orthogonal Decompositions

- Assume domain has Cartesian structure $\mathbb{X}=\mathbb{X}^{\prime} \times \mathbb{X}^{\prime \prime}$ (Space $\times$ Time)
- Truncated spectral expansion

$$
w_{r}\left(x^{\prime}, x^{\prime \prime}\right)=\sum_{n=1}^{r} a_{n}\left(x^{\prime \prime}\right) \xi_{n}\left(x^{\prime}\right)
$$

- Reduced model:

Collection of solutions $w_{r}$ that satisfy

$$
\left\langle D\left(\varsigma_{1}, \ldots, \varsigma_{N}\right) w_{r}, \xi_{n}\right\rangle=0 \quad n=1, \ldots, r
$$

Quality determined by POD basis functions $\left\{\xi_{n}\right\}$

## POD basis choice

POD basis: data dependent

$$
\begin{aligned}
W_{\text {snap }} & =\left[\begin{array}{ccc}
w\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right) & \cdots & w\left(x_{1}^{\prime}, x_{M}^{\prime \prime}\right) \\
\vdots & \ddots & \vdots \\
w\left(x_{L}^{\prime}, x_{1}^{\prime \prime}\right) & \cdots & w\left(x_{L}^{\prime}, x_{M}^{\prime \prime}\right)
\end{array}\right] \in \mathbb{R}^{L \times M} \\
& =U \Sigma V^{T}
\end{aligned}
$$

POD basis functions are left singular vectors

$$
U=\left[\xi_{1}, \ldots, \xi_{L}\right]
$$

Disadvantages

- Ignores possible structure in $\mathbb{X}^{\prime}$ by stacking all spatial information
- $L$ is proportional to the number of grid points $\rightarrow$ Huge!


## POD basis choice

POD basis: data dependent

$$
\begin{aligned}
W_{\text {snap }} & =\left[\begin{array}{ccc}
w\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right) & \cdots & w\left(x_{1}^{\prime}, x_{M}^{\prime \prime}\right) \\
\vdots & \ddots & \vdots \\
w\left(x_{L}^{\prime}, x_{1}^{\prime \prime}\right) & \cdots & w\left(x_{L}^{\prime}, x_{M}^{\prime \prime}\right)
\end{array}\right] \in \mathbb{R}^{L \times M} \\
& =U \Sigma V^{T}
\end{aligned}
$$

POD basis functions are left singular vectors

$$
U=\left[\xi_{1}, \ldots, \xi_{L}\right]
$$

Disadvantages

- Ignores possible structure in $\mathbb{X}^{\prime}$ by stacking all spatial information
- $L$ is proportional to the number of grid points $\rightarrow$ Huge!


## POD for $n \mathrm{D}$ systems

## Assume structure on spatial variables

- Recall $\mathbb{X}=\mathbb{X}^{\prime} \times \mathbb{X}^{\prime \prime}$ (Space $\times$ Time $)$
- Assume

$$
\mathbb{X}^{\prime}=\mathbb{X}_{1} \times \cdots \times \mathbb{X}_{N-1}
$$

- $\mathbb{X}_{n}$ : finite number of grid points
- Now snapshot data can be stored in multidimensional array

$$
W_{\text {snap }} \in \mathbb{R}^{L_{1} \times \cdots \times L_{N}}
$$

## Basis function computation

- Solution trajectory on $\underbrace{\mathbb{X}_{1} \times \cdots \times \mathbb{X}_{N-1}}_{\text {spatial domain }} \times \underbrace{\mathbb{X}_{N}}_{\text {time }}$
- $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{L_{n}}\right\}, n=1, \ldots, N$
- Associate inner product space $X_{n}$ with $\mathbb{X}_{n}$ :

$$
X_{n}:=\mathbb{R}^{L_{n}} \quad\left(X_{n},\langle\cdot, \cdot\rangle_{n}\right)
$$

- Solution stored in multidimensional array $W_{\text {snap }} \in \mathbb{R}^{L_{1} \times \cdots \times L_{N}}$
- $W_{\text {snap }}$ defines a tensor $\mathcal{W}: \mathbb{R}^{L_{1}} \times \cdots \times \mathbb{R}^{L_{N}} \rightarrow \mathbb{R}$, represented by

$$
\begin{equation*}
\mathcal{W}=\sum_{\ell_{1}} \cdots \sum_{\ell_{N}} w_{\ell_{1} \cdots \ell_{N}} e_{1}^{\left(\ell_{1}\right)} \otimes \cdots \otimes e_{N}^{\left(\ell_{N}\right)} \tag{1}
\end{equation*}
$$

What is a SVD of $\mathcal{W}$ ?

## Tensors

- Multi-indexed objects are described by Tensors
- Tensor of order- $N$ is a multi-linear functional

$$
\mathcal{W}: X_{1} \times \ldots \times X_{N} \rightarrow \mathbb{R}
$$

defined on $N$ inner product spaces $\left(X_{n},\langle\cdot, \cdot\rangle\right)$ of dimension $L_{n}$

- Represented by $N$-way array $\left[\left[w_{\ell_{1}, \ldots, \ell_{N}}\right]\right] \in \mathbb{R}^{L_{1} \times \cdots \times L_{N}}$ wrt bases $\left\{x_{n}^{\left(\ell_{n}\right)}, \ell_{n}=1, \ldots, L_{n}\right\}, n=1, \ldots, N$
- $w_{\ell_{1} \cdots \ell_{N}}:=\mathcal{W}\left(x_{1}^{\left(\ell_{1}\right)}, \ldots, x_{N}^{\left(\ell_{N}\right)}\right)$
- A matrix is an order-2 tensor
- $U=u_{1} \otimes \cdots \otimes u_{N}$, rank one tensor $U: X_{1} \times \cdots \times X_{N} \rightarrow \mathbb{R}$ defined by

$$
U\left(x_{1}, \ldots, x_{N}\right):=\prod_{n=1}^{N}\left\langle x_{n}, u_{n}\right\rangle
$$

## Tensor SVD (1)

First singular value

$$
\sigma_{1}=\max _{\substack{x_{n} \\\left\|x_{n}\right\|=1, n=1, \ldots, N}}
$$

- Maximum exists
- Yields unit vectors: $\varphi_{n}^{(1)} \in X_{n}, n=1, \ldots, N$



## Tensor SVD (2)

Second singular value

$$
\sigma_{2}=\max _{\substack{x_{n} \\\left\|x_{n}\right\|=1, n=1, \ldots, N}}
$$

subject to the constraint $\left\langle x_{n}, \varphi_{n}^{(1)}\right\rangle=0, n=1, \ldots, N$


## Tensor SVD (3)

Results in orthonormal bases

$$
\left\{\varphi_{n}^{\left(\ell_{n}\right)}, \ell_{n}=1, \ldots, L_{n}\right\} \quad \text { for } X_{n}, \quad n=1, \ldots, N
$$

## Definition

A singular value decomposition of the tensor $\mathcal{W}$ is a representation of $\mathcal{W}$ with respect to the basis (SVDbasis), i.e.,

$$
w_{\ell_{1} \cdots \ell_{N}}=\mathcal{W}\left(\varphi_{1}^{\left(\ell_{1}\right)}, \cdots, \varphi_{N}^{\left(\ell_{N}\right)}\right)
$$

- singular values $\sigma_{1}, \ldots, \sigma_{K}$.
- singular vectors of order $k$ are the maxima $\left(\varphi_{1}^{(k)}, \ldots, \varphi_{N}^{(k)}\right)$
$\rightarrow$ Tensor SVD for $\mathcal{W} \in \mathcal{T}_{2}$ : gives matrix SVD


## Signal Reduction

- Tensor SVD gives POD basis

$$
\left\{\varphi_{n}^{\left(\ell_{n}\right)}\right\}_{\ell_{n}=1}^{r_{n}} \quad n=1, \ldots, N-1
$$

- Spectral expansion for $w\left(x_{1}, \ldots, x_{N}\right)$ becomes

$$
w\left(x_{1}, \ldots, x_{N}\right)=\sum_{\ell_{1}} \cdots \sum_{\ell_{N-1}} a_{\ell_{1} \cdots \ell_{N-1}}\left(x_{N}\right) \varphi_{1}^{\left(\ell_{1}\right)}\left(x_{1}\right) \otimes \cdots \otimes \varphi_{N-1}^{\ell_{N-1}}\left(x_{N-1}\right)
$$

- Define truncation level $r=\left(r_{1}, \ldots, r_{N-1}\right)$
- Signal reduction

$$
\begin{aligned}
w_{r}\left(x_{1}, \ldots, x_{N}\right)= & \sum_{\ell_{1}=1}^{r_{1}} \cdots \sum_{\ell_{N-1}=1}^{r_{N-1}}
\end{aligned} a_{\ell_{1} \cdots \ell_{N-1}}\left(x_{N}\right) .
$$

## Model Reduction

- The reduced model is defined using a Galerkin projection
- Reduced model:

Trajectories $w_{r}$ that satisfy

$$
\left\langle D\left(\varsigma_{1}, \ldots, \varsigma_{N}\right) w_{r}, \varphi_{n}^{\left(\ell_{n}\right)}\right\rangle_{n}=0
$$

for $n=1, \ldots, N-1$ and $\ell_{n}=1, \ldots, r_{n}$

## Model reduction framework summarized:

(1) Determine POD basis through tensor SVD: computable!
(2) Signal reduction: truncate spectral expansion
(3) Model reduction: Galerkin projection

## Model Reduction

- The reduced model is defined using a Galerkin projection
- Reduced model:

Trajectories $w_{r}$ that satisfy

$$
\left\langle D\left(\varsigma_{1}, \ldots, \varsigma_{N}\right) w_{r}, \varphi_{n}^{\left(\ell_{n}\right)}\right\rangle_{n}=0
$$

for $n=1, \ldots, N-1$ and $\ell_{n}=1, \ldots, r_{n}$
Model reduction framework summarized:
(1) Determine POD basis through tensor SVD: computable!
(2) Signal reduction: truncate spectral expansion
(3) Model reduction: Galerkin projection

## Model reduction example

- 2D heat diffusion:

$$
\rho c_{p} \frac{\partial w}{\partial t}=\kappa_{x_{1}} \frac{\partial^{2} w}{\partial x_{1}^{2}}+\kappa_{x_{2}} \frac{\partial^{2} w}{\partial x_{2}^{2}}
$$

- $w\left(x_{1}, x_{2}, t\right)$ : Temperature on position $\left(x_{1}, x_{2}\right)$ and time $t$


Figure: Snapshots of original data $t_{1}$ (left) and $t_{L_{3}}$

- Discretize time and space and compute a solution
- Simulation data is stored in an array: $\left[\left[w_{\ell_{1} \ell_{2} \ell_{3}}\right]\right] \in \mathbb{R}^{L_{1} \times L_{2} \times L_{3}}$


## Solution using spectral expansions

- Compute TSVD for measurement $\left[\left[w_{\ell_{1} \ell_{2} \ell_{3}}\right]\right]$
$\rightarrow$ gives orthonormal bases $\left\{\varphi_{1}^{\left(\ell_{1}\right)}\right\}$ for $X_{1},\left\{\varphi_{2}^{\left(\ell_{2}\right)}\right\}$ for $X_{2},\left\{\varphi_{3}^{(3)}\right\}$ for $T:=\mathbb{R}^{L_{3}}$
- Use these in spectral decomposition to separate time and space

$$
w_{r}\left(x_{1}, x_{2}, t\right)=\sum_{\ell_{1}=1}^{r_{1}} \sum_{\ell_{2}=1}^{r_{2}} a_{\ell_{1} \ell_{2}}(t) \varphi_{1}^{\left(\ell_{1}\right)}\left(x_{1}\right) \varphi_{2}^{\left(\ell_{2}\right)}\left(x_{2}\right)
$$

- Traditional spectral expansion

$$
w_{r}\left(x_{1}, x_{2}, t\right)=\sum_{k=1}^{r} b_{k}(t) \xi_{k}\left(x_{1}, x_{2}\right)
$$

- $\left\{\xi_{k}\right\}_{1}^{r}$ : orthonormal basis for $\mathbb{X}=\mathbb{R}^{L_{1} \cdot L_{2}}$, computed by re-arranging $\left[\left[w_{\ell_{1} \ell_{2} \ell_{3}}\right]\right]$ into a matrix


## Tensor SVD results





Figure: First basis function for $X_{1}$ (left), $X_{2}$ (middle) and $X_{1} \times X_{2}$ (right)

## Model Reduction: Galerkin projection

Reduced model is defined as:

$$
w_{r}\left(x_{1}, x_{2}, t\right)=\sum_{\ell_{1}=1}^{r_{1}} \sum_{\ell_{2}=1}^{r_{2}} a_{\ell_{1} \ell_{2}}(t) \varphi_{1}^{\left(\ell_{1}\right)}\left(x_{1}\right) \varphi_{2}^{\left(\ell_{2}\right)}\left(x_{2}\right)
$$

with $a_{k l}(t)=[A(t)]_{k l}$ a solution of

$$
\rho c_{p} \dot{A}=\kappa_{x_{1}} F A+\kappa_{x_{2}} A P
$$

with $F$ and $P$ defined as:

$$
F=\left[\begin{array}{ccc}
\left\langle\varphi_{1}^{(1)}, \ddot{\varphi}_{1}^{(1)}\right\rangle & \ldots & \left\langle\varphi_{1}^{(1)}, \ddot{\varphi}_{1}^{\left(r_{1}\right)}\right\rangle \\
\vdots & \vdots \\
\left\langle\varphi_{1}^{\left(r_{1}\right)}, \ddot{\varphi}_{1}^{(1)}\right\rangle & \ldots\left\langle\varphi_{1}^{\left(r_{1}\right)}, \ddot{\varphi}_{1}^{\left(r_{1}\right)}\right\rangle
\end{array}\right] ; \quad P=\left[\begin{array}{ccc}
\left\langle\varphi_{2}^{(1)}, \ddot{\varphi}_{2}^{(1)}\right\rangle & \ldots & \left\langle\varphi_{2}^{(1)}, \ddot{\varphi}_{2}^{\left(r_{2}\right)}\right\rangle \\
\vdots & \vdots \\
\left\langle\varphi_{2}^{\left(r_{2}\right)}, \ddot{\varphi}_{2}^{(1)}\right\rangle & \ldots\left\langle\varphi_{2}^{\left(r_{2}\right)}, \ddot{\varphi}_{2}^{\left(r_{2}\right)}\right\rangle
\end{array}\right]
$$

Obtained through a Galerkin projection of the PDE residual

$$
\left\langle D\left(\varsigma_{1}, \varsigma_{2}, \varsigma_{3}\right) w_{r}, \varphi_{n}^{\left(\ell_{n}\right)}\right\rangle=0 ; \quad 1 \leq \ell_{n} \leq r_{n} \quad n=1,2
$$



Figure: Time slice of original data at time $t_{40}$ (left), time slice of reduced model of order $(7,7)$ at time $t_{40}$ (middle) and time slice of absolute error at time $t_{40}$ (right).

## Summary and Conclusions

Summary

- Adapted POD to $n \mathrm{D}$ systems
- Projection-based
- Projection spaces are computed using tensor decompositions

What did we gain?

- Basis-independent tensor SVD: computable!
- $n \mathrm{D}$ structure preserved in reduced model
- Reduction in each vector space separately
$\rightarrow$ Truncation level $r=\left(r_{1}, \ldots, r_{N-1}\right)$


## Future work

Future work

- Include multiple dependent variables in this framework
- Conservation of system properties:
- Stability
- Dissipativity
- Conservation of mass in flow models
- Test industrial benchmarks
- Develop tensor methods further:

Many algebraic concepts do not exist for tensors!

