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Introduction

Model-based process control

Focus on dynamic behavior of the process

Examples: crystallization, distillation, glass manufacturing,
polymerization, etc.

Both space and time as independent variables
Models described by PDEs

e Accurate
e Analytical solutions unknown/hard to compute
e Finite Element (FE) solutions: time-consuming
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Introduction

Model 9 5

ReR*&, ... €n]: real matrix-valued polynomial
w(zy,...,zy) € R: signal, (z1,...,zy) € X

Model reduction method should:
o Preserve nD structure of original system

o Capture system dynamics relevant for control
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Introduction

FEM/FVM gives
D(s1,...,sy)w = 0.

D e R*¢y, ..., &n]: real matrix-valued polynomial
Gn: forward shift operator, acting on nth mode
w(zy,...,xy) € R: signal, (z1,...,zy) € X

Model reduction method should:
e Preserve nD structure of original system
e Capture system dynamics relevant for control

e Retain original mesh configuration
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Introduction

e Assume domain has Cartesian structure X = X’ x X" (Space x Time)

e Truncated spectral expansion
T
wy(2',2") = Zan(xll)fn(xl)
n=1

e Reduced model:
Collection of solutions w, that satisfy

<D(§1,...,§N)’U]T,§n>=0 n=1,...,r

Quality determined by POD basis functions {&,}
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Introduction

POD basis: data dependent

w(eh,af) - w(ah,afy)
Wsnap = GRLXM
w(eh, ) o wi, o)
= uxvT

POD basis functions are left singular vectors

U= [617"‘a§L]
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Introduction

POD basis: data dependent

w(eh,af) - w(ah,afy)
Wsnap = GRLXM
w(eh, ) o wi, o)
= uxvT

POD basis functions are left singular vectors

U= [617"‘35[/]

Disadvantages
e Ignores possible structure in X’ by stacking all spatial information

e [ is proportional to the number of grid points — Huge!
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" POD fornDsystems

Assume structure on spatial variables

Recall X = X’ x X" (Space x Time)

e Assume

X’ZX:[X"'XXN_:[

X, finite number of grid points

e Now snapshot data can be stored in multidimensional array

Wsnap c RLl X--X L

Femke van Belzen (TU/e) June 29, 2009 6 /20



POD basis computation

e Solution trajectory on X7 X --- X Xy_1 X Xy

-~

spatial domain time
X, =A{x1,...,z,},n=1,...,N

Associate inner product space X,, with X,,:

Xy =R (X (5 )0)

Solution stored in multidimensional array Wenap € RIax-xLn
Wsnap defines a tensor W : RET x ... x REN — R, represented by

W = Z"'ngl...g]\,egel) ®"'®6§\€N) (1)
0 In

What is a SVD of W?
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POD basis computation

Multi-indexed objects are described by Tensors

Tensor of order-/N is a multi-linear functional
W:Xlx...xXN—>R

defined on N inner product spaces (X, (-,-)) of dimension L,

Represented by N-way array [[we, . sy]] € REL1XXLN \wrt bases
{a:(E")E =1,...,.L,},n=1,...,N

), 20

e A matrix is an order—2 tensor
U=u1 ® - Quy, rank one tensor U : X; x --- x Xy — R defined
by

Weyoty =W

N
U(.Tl, H xnyun
n=1
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POD basis computation

First singular value

g1 = max |W($1,...,J}N)|

Tn
lzn||=1,n=1,....N

e Maximum exists
e Yields unit vectors: gog) eX,,n=1,...,N

A o o
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POD basis computation

Second singular value

02 = H%%X |W($1,,$N)|
lzn||=1,n=1,....N
subject to the constraint <a:n, <p$})> =0, n=1,...,N

A o o

/2= )22 )22
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POD basis computation
Tensor

Results in orthonormal bases

{<P(Zn)7£n = 177Ln} for Xnv n = 17"'7N (SVDbaSIS)

n

Definition

A singular value decomposition of the tensor W is a representation of W
with respect to the basis (SVDbasis), i.e.,
¢ ¢
Wey...t0n = W(SOE l)a o 7S0§VN))
e singular values o1, ...,0K.
e singular vectors of order k are the maxima (gpgk), e ,gogl\;))

— Tensor SVD for W € 75: gives matrix SVD
June 29,2009 11 /20



Model reduction

e Tensor SVD gives POD basis
(Y m=1,... ,N—1

e Spectral expansion for w(x1,...,xx) becomes
¢ In_
W@, an) =D Y ey () ()@ @) (v )
121 IN-1

e Define truncation level r = (r1,...,7n—-1)

e Signal reduction

71 TN-1

wp(z1,...,2N) = Z Z ag,..tn_, (TN)

l1=1 In_1=1

o (@1) @ © 9 (Tno1)
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Model reduction

e The reduced model is defined using a Galerkin projection

e Reduced model:
Trajectories w;- that satisfy

<D(§1, < SN)Wy, @gn)>n =0

forn=1,...,N—1and ¥¢,=1,...,1,

Femke van Belzen (TU/e)



Model reduction

e The reduced model is defined using a Galerkin projection

e Reduced model:
Trajectories w;- that satisfy

<D(C1, < SN)Wy, 907(5")>n =0

foorn=1,...,.N—1land ¢, =1,...,1,
Model reduction framework summarized:
@ Determine POD basis through tensor SVD: computable!
® Signal reduction: truncate spectral expansion

©® Model reduction: Galerkin projection
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e 2D heat diffusion:
ow 9w s 0w
Cpar = Kay 5o + Koy 5y
Par = gz T g3

e w(xy,x9,t): Temperature on position (x1,z2) and time ¢

length (11)

Figure: Snapshots of original data ¢; (left) and ¢z,

e Discretize time and space and compute a solution
e Simulation data is stored in an array: [[wp,s,0,]] € RE1<E2%Ls
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e Compute TSVD for measurement [[wy, 7,4, ]]

— gives orthonormal bases {gogﬂl)} for Xl,{gogb)} for Xo, {g0§3)} for
T :=RL3
e Use these in spectral decomposition to separate time and space

(21,22, Z Z at,0, () (1) 95 (22)

l1=1/02=1

e Traditional spectral expansion

<

wy (w1, 22,t) = Y bp(t)&k(z1, x2)
k=1

o {&:}7: orthonormal basis for X = RE1L2, computed by re-arranging
[[we, e,05]] into @ matrix
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2

length (1) 0o 0 width (r2)

Figure: First basis function for X; (left), X5 (middle) and X7 x X5 (right)
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Reduced model is defined as:

(21,22, Z Z ae e, (o (1) 95 (02)
6=16=1
with ag(t) = [A(t)]r a solution of
pcpA = kg FA+ Ky, AP

with F' and P defined as:

(oD L (oV5) (o930 o (o0.55)
F= : : ;o P= : :
<w§m'7¢§1>> <@§r1>;¢§r1>> <¢§r2>"¢§1>> <@¥2);¢g2>>

Obtained through a Galerkin projection of the PDE residual

(Pletssassa)un ) =05 1<t < n=12
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Figure: Time slice of original data at time ¢4¢(left), time slice of reduced model

of order (7,7) at time t4o (middle) and time slice of absolute error at time ¢4
(right).
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Conclusions

Summary

e Adapted POD to nD systems

e Projection-based

e Projection spaces are computed using tensor decompositions
What did we gain?

o Basis-independent tensor SVD: computable!

e nD structure preserved in reduced model

e Reduction in each vector space separately
— Truncation level r = (ry,...,rN_1)
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Conclusions

Future work

e Include multiple dependent variables in this framework
o Conservation of system properties:

e Stability

e Dissipativity

e Conservation of mass in flow models

e Test industrial benchmarks

e Develop tensor methods further:
Many algebraic concepts do not exist for tensors!
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