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Introduction Main results Technical and physical interpretation Concluding remarks

We consider the second order equation

ẍ (t) =
1

m (t)
G (t, x (t)) w (t) +

1

m (t)
C (t) u (t) (1)

with the boundary conditions

x (t0) = x̄0, x (t1) = x̄1 (2)

G : [t0, t1]× Rn → Rn×K , C : [t0, t1] → Rn×N

are given matrix-valued functions

w and u are controls such that for t ∈ [t0, t1]

w (t) ∈ V and u (t) ∈ U (3)

where V ⊂ RK is convex and compact and U ⊂ RN such that
U =

˘
u ∈ RN ; ai ≤ ui ≤ 0, i = 1, 2, ...,N

¯
for fixed ai
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Moreover, w ∈ V and u ∈ U where

V =
n

w ∈ L2
“

[t0, t1] ,RK
”

; w (t) ∈ V
o
,

U =
n

u ∈ L2
“

[t0, t1] ,RN
”

; u (t) ∈ U
o

are sets of admissible controls.

m : [t0, t1] → R+ is a function satisfying

m (t) = m (t0) +
NX

i=1

tZ
t0

ui (τ) dτ ,

m (t0) + (t1 − t0)
NX

i=1

ai ≥ m > 0 (4)

and m (t) ≥ m > 0 on [t0, t1] with a fixed m.
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We also assume:

(A1) a matrix-valued function G : [t0, t1]× Rn → Rn×K is continuous and there
is a function P : [t0, t1]×Rn ×RK → R such that Px (t, x ,w) = G (t, x) w
and

P (t, x ,w) ≥ −α2 |x |2 − α1 |x | − α0

for some constant numbers αi , i = 0, 1, 2, where α2 ≤ m
2

“
π

t1−t0

”2

,

t ∈ [t0, t1] , x ∈ Rn, w ∈ V .

(A2) a matrix-valued function C : [t0, t1] → Rn×N is continuous.
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The functional of action for the system (1) has the form:

Q (x ,w , u) =
1

2

t1Z
t0

|ẋ (t)|2 dt+

t1Z
t0

1

m (t)
(P (t, x (t) ,w (t)) + (C (t) u (t) , x (t))) dt. (5)

The functional Q is well-defined on the space H1 ([t0, t1] ,Rn) .

Each critical point of the functional Q is a solution to (1) and the converse
statement is also true.
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|ẋ (t)|2 dt+

t1Z
t0

1

m (t)
(P (t, x (t) ,w (t)) + (C (t) u (t) , x (t))) dt. (5)

The functional Q is well-defined on the space H1 ([t0, t1] ,Rn) .

Each critical point of the functional Q is a solution to (1) and the converse
statement is also true.

Dorota Bors and Stanis law Walczak  Lódź, Poland
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Theorem 1. (On the existence of solutions)

If assumptions (A1)-(A2) are satisfied, then for any admissible control
(w , u) ∈ V × U there exist at least one trajectory for (1) satisfying boundary
conditions (2) .

Theorem 2. (On the uniqueness of solutions)

If assumptions (A1)-(A2) are satisfied and the function P is convex with
respect to x , then for any (w , u) ∈ V × U system (1) possesses exactly one
solution satisfying conditions (2).
One can relax the convexity assumption requiring only that the function
β |x |2 + P (t, x ,w) is convex with respect to x for an arbitrary t ∈ [t0, t1] ,

w ∈ V and some β < 1
2

“
π

t1−t0

”2

.
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On some nonlinear second order control systems



Introduction Main results Technical and physical interpretation Concluding remarks

Let

{(ws , us)}∞s=0 denote an arbitrary sequence of admissible controls convergent
to (w0, u0) in an appropriate topology.

Xs=X(ws ,us ) denote the set of all trajectories of the system (1)− (2)
corresponding to a control (ws , us) .

xs=x(ws ,us ) denote a trajectory of the system (1)− (2) corresponding to a
control (ws , us) .
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Theorem 3. (On the continuous dependence)

If for the control problem (1)− (4) the assumptions of Theorem 2 are satisfied,
then for an arbitrary control (ws , us) there exists the unique trajectory xs for
s = 0, 1, ... and xs converges to x0 in H1 ([t0, t1] ,Rn) , if (ws , us) tends to
(w0, u0) in the weak topology of L2

`
[t0, t1] ,RK × RN

´
.

In other words, if the assumptions of Theorem 2 are satisfied, then the operator
T : (w , u) 7−→ x(w,u) ∈ H1 ([t0, t1] ,Rn) is continuous with respect to the weak
topology in the set of controls and the strong topology in the set of trajectories.
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Theorem 4. (On the semicontinuous dependence)

If for the control problem (1)− (4) the assumptions of Theorem 1 are satisfied,
then
(a) sets X(w,u) are commonly bounded, i.e. there exist a ball B (0, ρ) such that
X(w,u) ⊂ B (0, ρ) for any (w , u) ∈ V × U ,
(b) Lim sup Xs 6= ∅ and Lim sup Xs ⊂ X0, if a sequence (ws , us) tends to
(w0, u0) in the weak topology of L2

`
[t0, t1] ,RK × RN

´
.

Definition

Lim sup Xs denotes the upper limit of a sequence {Xs}∞s=1 which is a set of all
cluster points of sequences {xs}∞s=1 such that xs ∈ Xs for s = 1, 2, ....

Assertions (a) , (b) mean that the multifunction (w , u) 7−→ X(w,u) is upper
semicontinuous with respect to the weak topology in the set of controls and
the strong topology in the set of trajectories.
When for any (w , u) ∈ V × U the set X(w,u) is a singleton, i.e.
X(w,u) =

˘
x(w,u)

¯
, the upper semicontinuity of the multifunction

(w , u) 7−→ X(w,u) can be reduced to the continuity of the operator
T : (w , u) 7−→ x(w,u).
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Next we shall consider the control problem (1)− (4) with the cost functional

I (x ,w , u) =

t1Z
t0

Φ (t, x (t) , ẋ (t) ,w (t) , u (t)) dt. (6)

(A3) an integrand Φ : [t0, t1]× Rn × Rn × V × U → R is continuous with
respect to (t, x , ẋ ,w , u), convex with respect to the controls (w , u) and
for each L > 0 there are a βL > 0 and a γL > 0 such that

|Φ (t, x , ẋ ,w , u)| ≤ βL |ẋ |2 + γL

for any x ∈ Rn, |x | < L, t ∈ [t0, t1] , w ∈ V and u ∈ U.

Dorota Bors and Stanis law Walczak  Lódź, Poland
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Theorem 5.

Suppose that the cost functional (6) satisfies assumption (A3) and for the
control problem (1)− (4) the assumptions of Theorem 2 are fulfilled. Then for
an arbitrary control (w , u) there exists the unique trajectory x(w,u) of the
problem (1)− (2) and in the set of all admissible processes

`
(w , u) , x(w,u)

´
there exists a process

`
(w∗, u∗) , x(w∗,u∗)

´
that minimizes the cost functional

(6) and we call it optimal.

An analogous theorem one can prove when the set of trajectories X(w,u)

corresponding to the control (w , u) contains many elements.
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In mechanics and the theory of decay of elementary particles the essential role
plays the following equation

m (t) v̇ (t) =
NX

i=1

(vi (t)− v (t)) ṁi (t) + f ext (t) . (7)

The equation (7) is so called the Meščerskii rocket equation and describes a
motion of some object with variable mass m = m (t) and velocity v = v (t) ,
such as a rocket, an airplane and the like. This object is powered by N engines
that emit gases with velocities vi = vi (t) , i = 1, 2, ...,N which is a
consequence of fuel combustion with the speed ṁi (t) . In equation (7) ,
f ext = f ext (t) denotes all external forces that stimulate the motion for example
the gravity force and the force exerted by controls.
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If we assume that

only one mass is emitted (N = 1),

the external force is negligible
`
f ext = 0

´
,

a relative velocity of the emitted mass is constant c = v1 (t)− v (t) < 0
for t ∈ [t0, t1],

then the equation (7) reduces to the well-known Tsiolkovskii equation

m (t) v̇ (t) = cṁ (t) . (8)

Integrating equation (8) , we obtain the following recipe for the velocity

v (t) = v (t0) + c ln
m (t)

m (t0)

which describes its dependence on the decreasing mass m (t) .
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Information about the Meščerskii equation and the Tsiolkovskii equation can be
found, among others, in:

A.A. Kosmodemianskii, The course of theoretical mechanics II, Moscow
(in Russian); 1966.

J.L. Meriam and L.G. Kraige, Engineering mechanics, Dynamics, 5th
edition, John Wiley & Sons; 2002.

I.V. Meščerskii, Works on mechanics of the variable mass, Moscow (in
Russian); 1962.

M. Pardy, The rocket equation for decays of elementary particles,
arXiv:hep-ph/0608161v1, 2008.

J. Peraire, Variable mass systems: the rocket equation, MIT
OpenSourceWare, Massachusetts Institute of Technology, Available online,
2004.
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Our equation is of Meščerskii type if we impose the following assumptions:

(a) the external force f ext depends on the location of the object

x (t) = x̄0 +

tZ
t0

v (τ) dτ

and on the controls exerting the force w (t) thus attaining the form

f ext (t) = f

0@t, x̄0 +

tZ
t0

v (τ) dτ

1A w (t) .

(b) we can control the speed of fuel combustion, i.e.

ui (t) = ṁi (t) ∈ [ai , 0] .

(c) the relative velocity of the emitted mass

ci (t) = vi (t)− v (t)

is known but it does not have to be constant as in the original formulation
of the Tsiolkovskii equation.
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Under the above assumptions the Meščerskii equation admits the
integro-differential form

m (t) v̇ (t) =
NX

i=1

ci (t) ui (t) + f

„
t, x0 +

Z t

t0

v (τ) dτ

«
w (t) . (9)

After the following substitutions

x (t) = x0 +

Z t

t0

v (τ) dτ,

ẋ (t) = v (t) ,

NX
i=1

ci (t) ui (t) = C (t) u (t) ,

f (t, x (t)) = G (t, x (t))

we finally obtain from the Meščerskii equation the equation (1).
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The results of the paper may be extended to the 2D continuous system of the
form

ztx (t, x) +
a

m0 −
tR

0

u (τ) dτ

zt (t, x) + bzx (t, x) = 0 (10)

with the boundary conditions

z (0, x) = ϕ (x) , z (t, 0) = ψ (t) , ϕ (0) = ψ (0) (11)

and the integral condition

m0 −
tZ

0

u (τ) dτ ≥ m1 > 0

for (t, x) ∈ [0, t1]× [0, x1] .
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System (10)− (11) describe the process of filtration of a mixture of liquids (for
example a mixture of water and some liquid with toxic substances) by passing
it through the filter made in the form of a vertical pipe.
For details see for example:

A.N. Tikhonov and A.A. Samarskii, Equations of Mathematical Physics,
Dover, New York; 1990.

In system (10)− (11) :

z = z (t, x) stands for the toxic liquid concentration at a moment t and at
a distance x from the inlet of the pipe,

u (t) denotes the speed of the flow of liquids from the interval [0, u1],

constants a and b are some physical quantities,

m1 is the mass of the filter,

m0 −m1 is the mass of the mixture we want to filter.
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System (10)− (11) is a counterpart of the discrete model of
Fornasini-Marchesini type that was examined in many paper with various cost
functionals.

D. Idczak, K. Kibalczyc and S. Walczak, On an optimization problem with
cost of rapid variation of control, The Journal of the Australian
Mathematical Society, Series B, Vol. 36, No. 1, 1994, pp.117-131.

Numerical algorithm for finding optimal solutions to the discrete version of the
process of filtration was presented in

V. Rehbock, S. Wang and K.L. Teo, Computing optimal control with
hyperbolic partial differential equation, The Journal of the Australian
Mathematical Society, Series B, Vol. 40, No. 2, 1998, pp.266-287.
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