Controlled and Conditioned Invariance with Stability for Two-Dimensional Systems
 Lorenzo Ntogramatzidis ${ }^{\ddagger}$, Michael Cantoni ${ }^{\star}$, Ran Yang ${ }^{\dagger}$
 ${ }^{\ddagger}$ Dept. Maths and Stats, Curtin University of Technology, Perth, Australia.
 *Dept. E \& E. Engineering, The University of Melbourne, Australia.
 ${ }^{\dagger}$ School of Inf. Sc. and Tech., Sun Yat-Sen University, Guangzhou, China.

$6^{\text {th }}$ International Workshop on Multidimensional (nD) Systems.

Outline

- Motivations
- 1-D Controlled and Conditioned Invariance
- Fornasini-Marchesini models
- 2-D Controlled and Conditioned Invariance
- Construction of (local) state feedback and output injection

Motivations

Where does the need to develop

 geometric methods for 2-D systems originate?- Insight into many system-theoretic properties of linear systems (invariant zeros, left and right invertibility, relative degree, etc.)
- Simple solutions to problems that are very hard to solve otherwise (disturbance decoupling, full information control, unknown-input observation, singular/cheap LQ problems, non-interaction, etc.)

Motivation: Disturbance Decoupling Problems

Controlled Invariance is the key tool to solve Disturbance Decoupling Problems:

- Decoupling of non-measured disturbances:

- Decoupling of measurable disturbances:

Motivation: Disturbance Decoupling Problems

Controlled Invariance is the key tool to solve Disturbance Decoupling Problems:

- Full Information for measurable disturbaces:

- Full Information for previewed disturbances:

Motivation: Tracking Problems

Controlled Invariance is the key tool to solve Model Matching Problems:

- Model Matching (Feedforward Scheme):

- Model Matching (Feedback Scheme):

Motivation: Unknown-Input Observation Problems.

Conditioned Invariance is the key tool to solve Unknown-Input Observation Problems:

- Unknown-Input Observer:

- Fixed-Lag Smoothing:

1-D Controlled Invariants (Basile \& Marro, 1969)

For 1-D system (A, B, C, D) :

- Controlled Invariant Subspaces:

$$
A \mathscr{V} \subseteq \mathscr{V}+\mathrm{im} B
$$

1-D Controlled Invariants (Basile \& Marro, 1969)

For 1-D system (A, B, C, D) :

- Controlled Invariant Subspaces:

$$
A \mathscr{V} \subseteq \mathscr{V}+\mathrm{im} B
$$

- Output-Nulling Subspaces:

$$
\left[\begin{array}{l}
A \\
C
\end{array}\right] \mathscr{V} \subseteq(\mathscr{V} \times\{0\})+\operatorname{im}\left[\begin{array}{l}
B \\
D
\end{array}\right]
$$

1-D Conditioned Invariants (Basile \& Marro, 1969).

For 1-D systems (A, B, C, D):

- Conditioned Invariant Subspaces:

$$
A(\mathscr{S} \cap \operatorname{ker} C) \subseteq \mathscr{S}
$$

1-D Conditioned Invariants (Basile \& Marro, 1969).

For 1-D systems (A, B, C, D):

- Conditioned Invariant Subspaces:

$$
A(\mathscr{S} \cap \operatorname{ker} C) \subseteq \mathscr{S}
$$

- Input-Containing Subspaces:

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]\left(\mathscr{S} \times \mathbb{R}^{m} \cap \operatorname{ker}\left[\begin{array}{ll}
C & D
\end{array}\right]\right) \subseteq \mathscr{S}
$$

Duality

The dual of the quadruple (A, B, C, D) is $\left(A^{\top}, C^{\top}, B^{\top}, D^{\top}\right)$.

Duality

The dual of the quadruple (A, B, C, D) is $\left(A^{\top}, C^{\top}, B^{\top}, D^{\top}\right)$.

$$
\left\{\begin{array} { r l }
{ x _ { k + 1 } } & { = A x _ { k } + B u _ { k } } \\
{ y _ { k } } & { = C x _ { k } + D u _ { k } }
\end{array} \longleftrightarrow \left\{\begin{array}{r}
\tilde{x}_{k+1}=A^{\top} \tilde{x}_{k}+C^{\top} \tilde{u}_{k} \\
\tilde{y}_{k}=B^{\top} \tilde{x}_{k}+D^{\top} \tilde{u}_{k}
\end{array}\right.\right.
$$

Duality

The dual of the quadruple (A, B, C, D) is $\left(A^{\top}, C^{\top}, B^{\top}, D^{\top}\right)$.

$$
\begin{gathered}
\left\{\begin{array} { r }
{ x _ { k + 1 } = A x _ { k } + B u _ { k } } \\
{ y _ { k } = C x _ { k } + D u _ { k } }
\end{array} \quad \longleftrightarrow \left\{\begin{array}{r}
\tilde{x}_{k+1}=A^{\top} \tilde{x}_{k}+C^{\top} \tilde{u}_{k} \\
\tilde{y}_{k}=B^{\top} \tilde{x}_{k}+D^{\top} \tilde{u}_{k}
\end{array}\right.\right. \\
\Sigma=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \quad \longleftrightarrow \quad \Sigma^{\top}=\left[\begin{array}{ll}
A^{\top} & C^{\top} \\
B^{\top} & D^{\top}
\end{array}\right]
\end{gathered}
$$

Duality

- Controlled and Conditioned Invariants are dual concepts:
\mathscr{V} is Controlled Invariant for Σ iff \mathscr{V}^{\perp} is Conditioned Invariant for Σ^{\top}.

Duality

- Controlled and Conditioned Invariants are dual concepts:
\mathscr{V} is Controlled Invariant for Σ iff \mathscr{V}^{\perp} is Conditioned Invariant for Σ^{\top}.
- Output-Nulling and Input-Containing Subspaces are dual concepts:
\mathscr{V} is Output-Nulling for Σ iff \mathscr{V}^{\perp} is InputContaining for Σ^{\top}.

Fornasini-Marchesini Models

The Kurek form of a 2-D Fornasini-Marchesini model is

$$
\left\{\begin{aligned}
x_{i+1, j+1}= & A_{0} x_{i, j}+A_{1} x_{i+1, j}+A_{2} x_{i, j+1} \\
& +B_{0} u_{i, j}+B_{1} u_{i+1, j}+B_{2} u_{i, j+1} \\
y_{i, j}= & C x_{i, j}+D u_{i, j}
\end{aligned}\right.
$$

Fornasini-Marchesini Models

The Kurek form of a 2-D Fornasini-Marchesini model is

$$
\left\{\begin{aligned}
x_{i+1, j+1}= & A_{0} x_{i, j}+A_{1} x_{i+1, j}+A_{2} x_{i, j+1} \\
& +B_{0} u_{i, j}+B_{1} u_{i+1, j}+B_{2} u_{i, j+1} \\
y_{i, j}= & C x_{i, j}+D u_{i, j}
\end{aligned}\right.
$$

Boundary Conditions:

$$
\mathfrak{B}=(\mathbb{N} \times\{0\}) \cup(\{0\} \times \mathbb{N})
$$

Fornasini-Marchesini Models

The Kurek form of a 2-D Fornasini-Marchesini model is

$$
\left\{\begin{aligned}
x_{i+1, j+1}= & A_{0} x_{i, j}+A_{1} x_{i+1, j}+A_{2} x_{i, j+1} \\
& +B_{0} u_{i, j}+B_{1} u_{i+1, j}+B_{2} u_{i, j+1} \\
y_{i, j}= & C x_{i, j}+D u_{i, j}
\end{aligned}\right.
$$

2-D Controlled Invariant Subspaces:

$$
\left[\begin{array}{l}
A_{0} \\
A_{1} \\
A_{2}
\end{array}\right] \mathscr{V} \subseteq(\mathscr{V} \times \mathscr{V} \times \mathscr{V})+\operatorname{im}\left[\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right],
$$

(Conte \& Perdon, 1988).

Fornasini-Marchesini Models

The Kurek form of a 2-D Fornasini-Marchesini model is

$$
\left\{\begin{aligned}
x_{i+1, j+1}= & A_{0} x_{i, j}+A_{1} x_{i+1, j}+A_{2} x_{i, j+1} \\
& +B_{0} u_{i, j}+B_{1} u_{i+1, j}+B_{2} u_{i, j+1} \\
y_{i, j}= & C x_{i, j}+D u_{i, j}
\end{aligned}\right.
$$

Notation: Given matrices M_{0}, M_{1}, M_{2} :

$$
M_{V}=\left[\begin{array}{l}
M_{0} \\
M_{1} \\
M_{2}
\end{array}\right], \quad M_{H}=\left[\begin{array}{lll}
M_{0} & M_{1} & M_{2}
\end{array}\right], \quad M_{D}=\left[\begin{array}{ccc}
M & 0 & O \\
0 & M & 0 \\
0 & 0 & M
\end{array}\right] .
$$

Hence, \mathscr{V} is controlled invariant if $A_{V} \mathscr{V} \subseteq \mathscr{V}_{D}+\operatorname{im} B_{V}$, where $\mathscr{V}_{D} \triangleq \mathscr{V} \times \mathscr{V} \times \mathscr{V}$.

Synopsis for Controlled Invariance

- A 1-D Controlled Invariant is a subspace \mathscr{V} s.t.

$$
A \mathscr{V} \subseteq \mathscr{V}+\mathrm{im} B
$$

- A 2-D Controlled Invariant is a subspace \mathscr{V} s.t.

$$
A_{V} \mathscr{V} \subseteq \mathscr{V}_{D}+\operatorname{im} B_{V}
$$

- A 1-D Output-Nulling subspace \mathscr{V} is s.t.

$$
\left[\begin{array}{l}
A \\
C
\end{array}\right] \mathscr{V} \subseteq(\mathscr{V} \times\{0\})+\mathrm{im}\left[\begin{array}{l}
B \\
D
\end{array}\right]
$$

- A 2-D Output-Nulling subspace \mathscr{V} is s.t.

$$
\left[\begin{array}{c}
A_{V} \\
C
\end{array}\right] \mathscr{V} \subseteq\left(\mathscr{V}_{D} \times\{0\}\right)+\operatorname{im}\left[\begin{array}{c}
B_{V} \\
D
\end{array}\right]
$$

Duals of Fornasini-Marchesini Models

For the special FM models

$$
\left\{\begin{aligned}
x_{i+1, j+1} & =A_{0} x_{i, j}+A_{1} x_{i+1, j}+A_{2} x_{i, j+1}+B u_{i, j} \\
y_{i, j} & =C x_{i, j}+D u_{i, j}
\end{aligned}\right.
$$

Duals of Fornasini-Marchesini Models

For the special FM models

$$
\left\{\begin{aligned}
x_{i+1, j+1} & =A_{0} x_{i, j}+A_{1} x_{i+1, j}+A_{2} x_{i, j+1}+B u_{i, j} \\
y_{i, j} & =C x_{i, j}+D u_{i, j}
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
x_{i+1, j+1} & =A_{1} x_{i+1, j}+A_{2} x_{i, j+1}+B_{1} u_{i+1, j}+B_{2} u_{i, j+1} \\
y_{i, j} & =C_{1} x_{i+1, j}+C_{2} x_{i, j+1}+D_{1} u_{i+1, j}+D_{2} u_{i, j+1}
\end{aligned}\right.
$$

a dual can be easily defined (see Karamanciog̃lu and Lewis, 1992).

Synopsis for Conditioned Invariance

- A 1-D Conditioned Invariant is a subspace \mathscr{S} s.t.

$$
A(\mathscr{S} \cap \operatorname{ker} C) \subseteq \mathscr{S}
$$

- A 2-D Conditioned Invariant is a subspace \mathscr{S} s.t.

$$
A_{H}\left(\mathscr{S}_{D} \cap \operatorname{ker} C_{D}\right) \subseteq \mathscr{S}
$$

- A 1-D Input-Containing subspace \mathscr{S} is s.t.

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]\left(\mathscr{S} \times \mathbb{R}^{m} \cap \operatorname{ker}\left[\begin{array}{ll}
C & D
\end{array}\right]\right) \subseteq \mathscr{S}
$$

- A 2-D Input-Containing subspace \mathscr{S} is s.t.

$$
\left[\begin{array}{ll}
A_{H} & B_{H}
\end{array}\right]\left(\mathscr{S}_{D} \times \mathbb{R}^{3 m} \cap \operatorname{ker}\left[\begin{array}{ll}
C_{D} & D_{D}
\end{array}\right]\right) \subseteq \mathscr{S}
$$

$6^{\text {th }}$ International Workshop on Multidimensional (nD) Systems.

Controlled Invariant Subspaces: Interpretation

The subspace $\mathscr{V} \subseteq \mathbb{R}^{n}$ is controlled invariant if

$$
A_{V} \mathscr{V} \subseteq \mathscr{V}_{D}+\mathrm{im} B_{V}
$$

Controlled Invariant Subspaces: Interpretation

The subspace $\mathscr{V} \subseteq \mathbb{R}^{n}$ is controlled invariant if

$$
A_{V} \mathscr{V} \subseteq \mathscr{V}_{D}+\mathrm{im} B_{V}
$$

A controlled invariant \mathscr{V} is such that the FM model admits a solution in $x_{i, j} \in \mathscr{V}$ for any \mathscr{V}-valued boundary condition:

$$
x_{i, j} \in \mathscr{V} \quad \forall(i, j) \in \mathfrak{B} \Longrightarrow \exists u_{i, j}: x_{i, j} \in \mathscr{V} \quad \forall i, j \geq 0
$$

Controlled Invariant Subspaces: Interpretation

The subspace $\mathscr{V} \subseteq \mathbb{R}^{n}$ is controlled invariant if

$$
A_{V} \mathscr{V} \subseteq \mathscr{V}_{D}+\mathrm{im} B_{V}
$$

A controlled invariant \mathscr{V} is such that the FM model admits a solution in $x_{i, j} \in \mathscr{V}$ for any \mathscr{V}-valued boundary condition:

$$
x_{i, j} \in \mathscr{V} \quad \forall(i, j) \in \mathfrak{B} \Longrightarrow \exists u_{i, j}: x_{i, j} \in \mathscr{V} \quad \forall i, j \geq 0
$$

Such control $u_{i, j}$ can always be expressed as

$$
u_{i, j}=F x_{i, j}
$$

Output-Nulling Subspaces: Interpretation

The subspace $\mathscr{V} \subseteq \mathbb{R}^{n}$ is output-nulling if

$$
\left[\begin{array}{c}
A_{V} \\
C
\end{array}\right] \mathscr{V} \subseteq\left(\mathscr{V}_{D} \times\{0\}\right)+\operatorname{im}\left[\begin{array}{c}
B_{V} \\
D
\end{array}\right]
$$

Output-Nulling Subspaces: Interpretation

The subspace $\mathscr{V} \subseteq \mathbb{R}^{n}$ is output-nulling if

$$
\left[\begin{array}{c}
A_{V} \\
C
\end{array}\right] \mathscr{V} \subseteq\left(\mathscr{V}_{D} \times\{0\}\right)+\mathrm{im}\left[\begin{array}{c}
B_{V} \\
D
\end{array}\right]
$$

An output-nulling \mathscr{V} is such that the FM model admits a solution in $x_{i, j} \in \mathscr{V}$ for any \mathscr{V}-valued boundary condition and the corresponding output is zero:

$$
x_{i, j} \in \mathscr{V} \forall(i, j) \in \mathfrak{B} \Longrightarrow \exists u_{i, j}: x_{i, j} \in \mathscr{V} \text { and } y_{i, j}=0 \forall i, j \geq 0
$$

Output-Nulling Subspaces: Interpretation

The subspace $\mathscr{V} \subseteq \mathbb{R}^{n}$ is output-nulling if

$$
\left[\begin{array}{c}
A_{V} \\
C
\end{array}\right] \mathscr{V} \subseteq\left(\mathscr{V}_{D} \times\{0\}\right)+\mathrm{im}\left[\begin{array}{c}
B_{V} \\
D
\end{array}\right]
$$

An output-nulling \mathscr{V} is such that the FM model admits a solution in $x_{i, j} \in \mathscr{V}$ for any \mathscr{V}-valued boundary condition and the corresponding output is zero:

$$
x_{i, j} \in \mathscr{V} \forall(i, j) \in \mathfrak{B} \Longrightarrow \exists u_{i, j}: x_{i, j} \in \mathscr{V} \text { and } y_{i, j}=0 \forall i, j \geq 0
$$

Such control $u_{i, j}$ can always be expressed as

$$
u_{i, j}=F x_{i, j}
$$

$6^{\text {th }}$ International Workshop on Multidimensional (nD) Systems.

Controlled Invariance and Local State Feedback

Plugging $u_{i, j}=F x_{i, j}$ into the FM model and after a change of coordinates with $T=\left[\begin{array}{ll}T_{1} & T_{2}\end{array}\right]$ with $\operatorname{im} T_{1}=\mathscr{V}$, we get

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{i+1, j+1}^{\prime} \\
x_{i+1, j+1}^{\prime \prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{0}^{11}(F) & A_{0}^{12}(F) \\
0 & A_{0}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j}^{\prime} \\
x_{i, j}^{\prime \prime}
\end{array}\right]+\left[\begin{array}{cc}
A_{1}^{11}(F) & A_{1}^{12}(F) \\
0 & A_{1}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i+1, j}^{\prime} \\
x_{i+1, j}^{\prime \prime}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
A_{2}^{11}(F) & A_{2}^{12}(F) \\
0 & A_{2}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j+1}^{\prime}\left(\begin{array}{l}
x_{i, j+1}^{\prime}
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

Controlled Invariance and Local State Feedback

Plugging $u_{i, j}=F x_{i, j}$ into the FM model and after a change of coordinates with $T=\left[\begin{array}{ll}T_{1} & T_{2}\end{array}\right]$ with $\operatorname{im} T_{1}=\mathscr{V}$, we get

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{i+1, j+1}^{\prime} \\
x_{i+1, j+1}^{\prime \prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{0}^{11}(F) & A_{0}^{12}(F) \\
0 & A_{0}^{2}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j}^{\prime} \\
x_{i, j}^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
A_{1}^{11}(F) & A_{1}^{12}(F) \\
0 & A_{1}^{2}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, 1, j}^{\prime} \\
x_{i+1, j}^{\prime \prime}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
A_{2}^{11}(F) & A_{2}^{12}(F) \\
0 & A_{2}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j+1}^{\prime}\left(\begin{array}{l}
x_{i, j+1}^{\prime}
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

- $x_{i, j}^{\prime}$ is the internal component of $x_{i, j}$ on \mathscr{V};
- $x_{i, j}^{\prime \prime}$ is the external component of $x_{i, j}$ w.r.t. \mathscr{V}.

Problem: Find a friend of \mathscr{V} such that the internal and external components of the local state are both stable.

Controlled Invariance and Local State Feedback

Plugging $u_{i, j}=F x_{i, j}$ into the FM model and after a change of coordinates with $T=\left[\begin{array}{ll}T_{1} & T_{2}\end{array}\right]$ with $\operatorname{im} T_{1}=\mathscr{V}$, we get

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{i+1, j+1}^{\prime} \\
x_{i+1, j+1}^{\prime \prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{0}^{11}(F) & A_{0}^{12}(F) \\
0 & A_{0}^{2}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j}^{\prime} \\
x_{i, j}^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
A_{1}^{11}(F) & A_{1}^{12}(F) \\
0 & A_{1}^{2}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i 11, j}^{\prime} \\
x_{i+1, j}^{\prime \prime}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
A_{2}^{11}(F) & A_{2}^{12}(F) \\
0 & A_{2}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j+1}^{\prime} \\
x_{i, j+1}^{\prime \prime}
\end{array}\right]
\end{aligned}
$$

- If $\exists F$ such that $\left(A_{0}^{11}(F), A_{1}^{11}(F), A_{1}^{11}(F)\right)$ is asympt. stable, \mathscr{V} is said to be internally stabilisable;
- If $\exists F$ such that $\left(A_{0}^{22}(F), A_{1}^{22}(F), A_{1}^{22}(F)\right)$ is asympt. stable, \mathscr{V} is said to be externally stabilisable.

Controlled Invariance and Local State Feedback

Consider again

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{i+1, j+1}^{\prime} \\
x_{i+1, j+1}^{\prime \prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{0}^{11}(F) & A_{0}^{12}(F) \\
0 & A_{0}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j}^{\prime} \\
x_{i, j}^{\prime \prime}
\end{array}\right]+\left[\begin{array}{cc}
A_{1}^{11}(F) & A_{1}^{12}(F) \\
0 & A_{1}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i+1, j}^{\prime} \\
x_{i+1, j}^{\prime \prime}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
A_{2}^{11}(F) A_{2}^{12}(F) \\
0 & A_{2}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j+1}^{\prime} \\
x_{i, j+1}^{\prime \prime}
\end{array}\right]
\end{aligned}
$$

Controlled Invariance and Local State Feedback

Consider again

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{i+1, j+1}^{\prime} \\
x_{i+1, j+1}^{\prime \prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{0}^{11}(F) & A_{0}^{12}(F) \\
0 & A_{0}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j}^{\prime} \\
x_{i, j}^{\prime \prime}
\end{array}\right]+\left[\begin{array}{cc}
A_{1}^{11}(F) & A_{1}^{12}(F) \\
0 & A_{1}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i+1, j}^{\prime} \\
x_{i+1, j}^{\prime \prime}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
A_{2}^{11}(F) & A_{2}^{12}(F) \\
0 & A_{2}^{22}(F)
\end{array}\right]\left[\begin{array}{l}
x_{i, j+1}^{\prime} \\
x_{i, j+1}^{\prime \prime}
\end{array}\right]
\end{aligned}
$$

Given \mathscr{V}, there are many friends F. How to select those F for which

- $\left(A_{0}^{11}(F), A_{1}^{11}(F), A_{2}^{11}(F)\right)$ is asympt. stable?
- $\left(A_{0}^{22}(F), A_{1}^{22}(F), A_{2}^{22}(F)\right)$ is asympt. stable?

Controlled Invariance and Local State Feedback

Let V be a basis of \mathscr{V}. The following are equivalent:

- The subspace \mathscr{V} is controlled invariant:

$$
A_{V} \mathscr{V} \subseteq \mathscr{V}_{D}+\mathrm{im} B_{V}
$$

Controlled Invariance and Local State Feedback

Let V be a basis of \mathscr{V}. The following are equivalent:

- The subspace \mathscr{V} is controlled invariant:

$$
A_{V} \mathscr{V} \subseteq \mathscr{V}_{D}+\operatorname{im} B_{V}
$$

- $\exists X, \Omega$ such that

$$
A_{V} V=V_{D} X+B_{V} \Omega
$$

Controlled Invariance and Local State Feedback

Let V be a basis of \mathscr{V}. The following are equivalent:

- The subspace \mathscr{V} is controlled invariant:

$$
A_{V} \mathscr{V} \subseteq \mathscr{V}_{D}+\operatorname{im} B_{V}
$$

- $\exists X, \Omega$ such that

$$
A_{V} V=V_{D} X+B_{V} \Omega
$$

$-\exists F, X$ such that

$$
\left(A_{V}+B_{V} F\right) V=V_{D} X
$$

$-\mathscr{V}$ is $\left(A_{i}+B_{i} F\right)$-invariant $(i \in\{0,1,2\})$.

Controlled Invariance and Local State Feedback

In order to find F :
a) Solve $A_{V} V=V_{D} X+B_{V} \Omega$:

$$
\left[\begin{array}{l}
X \\
\Omega
\end{array}\right]=\left[\begin{array}{ll}
V_{D} & B_{V}
\end{array}\right]^{\dagger} A_{V} V+H_{1} K_{1} \quad \text { where } \operatorname{im} H_{1}=\operatorname{ker}\left[\begin{array}{ll}
V_{D} & B_{V}
\end{array}\right]
$$

Controlled Invariance and Local State Feedback

In order to find F :
a) Solve $A_{V} V=V_{D} X+B_{V} \Omega$:

$$
\left[\begin{array}{l}
X \\
\Omega
\end{array}\right]=\left[\begin{array}{ll}
V_{D} & B_{V}
\end{array}\right]^{\dagger} A_{V} V+H_{1} K_{1} \quad \text { where im } H_{1}=\operatorname{ker}\left[\begin{array}{ll}
V_{D} & B_{V}
\end{array}\right]
$$

b) Let F be such that $\Omega=-F V$:

$$
F=-\Omega\left(V^{\top} V\right)^{-1} V^{\top}+K_{2} H_{2}, \quad \text { where } \operatorname{ker} H_{2}=\operatorname{im} V
$$

Two degrees of freedom in the choice of F : matrices K_{1} and K_{2}.

Controlled Invariance and Local State Feedback

Consider again

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{i+1, j+1}^{\prime} \\
x_{i+1, j+1}^{\prime \prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{0}^{11}\left(K_{1}, K_{2}\right) & A_{0}^{12}\left(K_{1}, K_{2}\right) \\
0 & A_{0}^{22}\left(K_{1}, K_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{i, j}^{\prime} \\
x_{i, j}^{\prime \prime}
\end{array}\right]+\left[\begin{array}{cc}
A_{1}^{11}\left(K_{1}, K_{2}\right) & A_{1}^{12}\left(K_{1}, K_{2}\right) \\
0 & A_{1}^{22}\left(K_{1}, K_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{i+1, j}^{\prime} \\
x_{i+1, j}^{\prime \prime}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
A_{2}^{11}\left(K_{1}, K_{2}\right) & A_{2}^{12}\left(K_{1}, K_{2}\right) \\
0 & A_{2}^{22}\left(K_{1}, K_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{i, j+1}^{\prime} \\
x_{i, j+1}^{\prime \prime}
\end{array}\right]
\end{aligned}
$$

Controlled Invariance and Local State Feedback

Consider again

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{i+1, j+1}^{\prime} \\
x_{i+1, j+1}^{\prime \prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{0}^{11}\left(K_{1}, K_{2}\right) & A_{0}^{12}\left(K_{1}, K_{2}\right) \\
0 & A_{0}^{22}\left(K_{1}, K_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{i, j}^{\prime} \\
x_{i, j}^{\prime \prime}
\end{array}\right]+\left[\begin{array}{cc}
A_{1}^{11}\left(K_{1}, K_{2}\right) & A_{1}^{12}\left(K_{1}, K_{2}\right) \\
0 & A_{1}^{22}\left(K_{1}, K_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{i+1, j}^{\prime} \\
x_{i+1, j}^{\prime \prime}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
A_{2}^{11}\left(K_{1}, K_{2}\right) & A_{2}^{12}\left(K_{1}, K_{2}\right) \\
0 & A_{2}^{22}\left(K_{1}, K_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{i, j+1}^{\prime} \\
x_{i, j+1}^{\prime \prime}
\end{array}\right]
\end{aligned}
$$

- matrices $A_{i}^{11}\left(K_{1}, K_{2}\right)$ do not depend on K_{2}
- matrices $A_{i}^{22}\left(K_{1}, K_{2}\right)$ do not depend on K_{1}
\Downarrow
Two independent procedures to find K_{1} and K_{2}.

Input-Containing Subspaces: Interpretation

The subspace $\mathscr{S} \subseteq \mathbb{R}^{n}$ is input-containing if

$$
\left[\begin{array}{ll}
A_{H} & B_{H}
\end{array}\right]\left(\mathscr{S}_{D} \times \mathbb{R}^{3 m} \cap \operatorname{ker}\left[\begin{array}{ll}
C_{D} & D_{D}
\end{array}\right]\right) \subseteq \mathscr{S}
$$

Input-Containing Subspaces: Interpretation

The subspace $\mathscr{S} \subseteq \mathbb{R}^{n}$ is input-containing if

$$
\left[\begin{array}{ll}
A_{H} & B_{H}
\end{array}\right]\left(\mathscr{S}_{D} \times \mathbb{R}^{3 m} \cap \operatorname{ker}\left[\begin{array}{ll}
C_{D} & D_{D}
\end{array}\right]\right) \subseteq \mathscr{S}
$$

An input-containing \mathscr{S} is such that an observer for the FM ruled by

$$
\begin{aligned}
\omega_{i+1, j+1}= & K_{0} \omega_{i, j}+K_{1} \omega_{i+1, j}+K_{2} \omega_{i, j+1}+N_{0} u_{i, j}+N_{1} u_{i+1, j} \\
& +N_{2} u_{i, j+1}+L_{0} y_{i, j}+L_{1} y_{i+1, j}+L_{2} y_{i, j+1}
\end{aligned}
$$

exists such that

$$
\omega_{i, j}=x_{i, j} / \mathscr{S} \forall(i, j) \in \mathfrak{B} \Longrightarrow \omega_{i, j}=x_{i, j} / \mathscr{S} \forall i, j \geq 0
$$

Input-Containing Subspaces and Output Injection

It can be shown that input-containing subspaces are linked to the existence of output-injection matrices G such that

$$
\left[\begin{array}{ll}
A_{H}+G C_{D} & B_{H}+G D_{D}
\end{array}\right]\left(\mathscr{S}_{D} \times \mathbb{R}^{3 m}\right) \subseteq \mathscr{S}
$$

The notion of external stabilisability of an input-containing subspace can lead to a definition of detectability subspace.

Given a detectability subspace \mathscr{S}, we can construct an observer such that $\omega_{i, j}$ converges to $x_{i, j} / \mathscr{S}$ as (i, j) evolves away from \mathfrak{B}.

[^0]
Concluding remarks and future works

Concluding remarks:

- Notions of 2-D controlled and conditioned invariance with stabilisability properties;
- Simple (constructive) solutions to disturbance decoupling and unknown-input observation problems.

Future work:

- Reachability subspaces and invariant zeros;
- Geometric solution to singular LQ problems.

References

[1] G. Basile and G. Marro. Controlled and conditioned invariant subspaces in linear system theory. Journal of Optimization Theory and Applications, 3(5):306-315, May 1969.
[2] G. Conte and A. Perdon. A geometric approach to the theory of 2-D systems. IEEE Transactions on Automatic Control, AC-33(10):946-950, October 1988.
[3] G. Conte, A. Perdon, and T. Kaczorek. Geometric methods in the theory of singular 2-D linear systems. Kybernetika, 27(3):263-270, 1991.
[4] E. Fornasini and G. Marchesini, "Doubly-Indexed Dynamical Systems: State-Space Models and Structural Properties," Mathematical System Theory, vol. 12, pp. 59-72, 1978.
[5] A. Karamanciog̃lu and F.L. Lewis. Geometric theory for the singular Roesser model. IEEE Transactions on Automatic Control, AC-37(6):801-806, June 1992.
[6] J. Kurek. The general state-space model for a two-dimensional linear digital system. IEEE Transactions on Automatic Control, AC-30(6):600-602, June 1985.

$6^{\text {th }}$ International Workshop on Multidimensional (nD) Systems.

[^0]:

