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Motivations

Where does the need to develop
geometric methods for 2-D systems originate?

Insight into many system-theoretic properties of linear
systems (invariant zeros, left and right invertibility,
relative degree, etc.)

Simple solutions to problems that are very hard to
solve otherwise (disturbance decoupling, full
information control, unknown-input observation,
singular/cheap LQ problems, non-interaction, etc.)

6th International Workshop on Multidimensional (nD) Systems.



◦
•
◦

••

4/26

Motivation: Disturbance Decoupling Problems

Controlled Invariance is the key tool to solve Disturbance
Decoupling Problems:

Decoupling of non-measured disturbances:
















Σ

F

d

x

y

u

Decoupling of measurable disturbances:




















 Σ

F2
x

y

u
F1

+

d

6th International Workshop on Multidimensional (nD) Systems.



◦
•
◦

••

5/26

Motivation: Disturbance Decoupling Problems

Controlled Invariance is the key tool to solve Disturbance
Decoupling Problems:

Full Information for measurable disturbaces:
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Full Information for previewed disturbances:
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Motivation: Tracking Problems

Controlled Invariance is the key tool to solve Model
Matching Problems:

Model Matching (Feedforward Scheme):
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Motivation: Unknown-Input Observation Problems

Conditioned Invariance is the key tool to solve
Unknown-Input Observation Problems:

Unknown-Input Observer:
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1-D Controlled Invariants (Basile & Marro, 1969)

For 1-D system (A,B,C,D):

Controlled Invariant Subspaces:

AV ⊆ V + imB

6th International Workshop on Multidimensional (nD) Systems.
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1-D Controlled Invariants (Basile & Marro, 1969)

For 1-D system (A,B,C,D):

Controlled Invariant Subspaces:

AV ⊆ V + imB

Output-Nulling Subspaces:

[

A

C

]

V ⊆ (V ×{0})+ im
[

B

D

]
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1-D Conditioned Invariants (Basile & Marro, 1969)

For 1-D systems (A,B,C,D):

Conditioned Invariant Subspaces:

A(S ∩kerC)⊆S

6th International Workshop on Multidimensional (nD) Systems.
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1-D Conditioned Invariants (Basile & Marro, 1969)

For 1-D systems (A,B,C,D):

Conditioned Invariant Subspaces:

A(S ∩kerC)⊆S

Input-Containing Subspaces:

[ A B ] (S ×R
m∩ker[ C D ])⊆S

6th International Workshop on Multidimensional (nD) Systems.
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Duality

The dual of the quadruple (A,B,C,D) is (A⊤,C⊤,B⊤,D⊤).
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Duality

The dual of the quadruple (A,B,C,D) is (A⊤,C⊤,B⊤,D⊤).







xk+1 = Axk +Buk

yk = C xk +Duk

←→







x̃k+1 = A⊤ x̃k +C⊤ ũk

ỹk = B⊤ x̃k +D⊤ ũk

6th International Workshop on Multidimensional (nD) Systems.



◦
•
•
•
◦

••

10/26

Duality

The dual of the quadruple (A,B,C,D) is (A⊤,C⊤,B⊤,D⊤).







xk+1 = Axk +Buk

yk = C xk +Duk

←→







x̃k+1 = A⊤ x̃k +C⊤ ũk

ỹk = B⊤ x̃k +D⊤ ũk

Σ =





A B

C D



 ←→ Σ⊤ =





A⊤ C⊤

B⊤ D⊤




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Duality

Controlled and Conditioned Invariants are dual
concepts:

V is Controlled Invariant for Σ iff V ⊥ is
Conditioned Invariant for Σ⊤.
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Duality

Controlled and Conditioned Invariants are dual
concepts:

V is Controlled Invariant for Σ iff V ⊥ is
Conditioned Invariant for Σ⊤.

Output-Nulling and Input-Containing Subspaces are
dual concepts:

V is Output-Nulling for Σ iff V ⊥ is Input-
Containing for Σ⊤.
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Fornasini-Marchesini Models

The Kurek form of a 2-D Fornasini-Marchesini model is


















xi+1, j+1 = A0xi, j +A1xi+1, j +A2xi, j+1

+B0ui, j +B1ui+1, j +B2ui, j+1

yi, j = C xi, j +Dui, j

6th International Workshop on Multidimensional (nD) Systems.
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Fornasini-Marchesini Models

The Kurek form of a 2-D Fornasini-Marchesini model is


















xi+1, j+1 = A0xi, j +A1xi+1, j +A2xi, j+1

+B0ui, j +B1ui+1, j +B2ui, j+1

yi, j = C xi, j +Dui, j

Boundary Conditions:

.


.


.


.


.
.
 .
.
 .
.


B =
(

N×{0}
)

∪
(

{0}×N

)
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Fornasini-Marchesini Models

The Kurek form of a 2-D Fornasini-Marchesini model is


















xi+1, j+1 = A0xi, j +A1xi+1, j +A2xi, j+1

+B0ui, j +B1ui+1, j +B2ui, j+1

yi, j = C xi, j +Dui, j

2-D Controlled Invariant Subspaces:
[

A0

A1

A2

]

V ⊆ (V ×V ×V )+ im

[B0

B1

B2

]

,

(Conte & Perdon, 1988).
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Fornasini-Marchesini Models

The Kurek form of a 2-D Fornasini-Marchesini model is


















xi+1, j+1 = A0xi, j +A1xi+1, j +A2xi, j+1

+B0ui, j +B1ui+1, j +B2ui, j+1

yi, j = C xi, j +Dui, j

Notation: Given matrices M0, M1 , M2:

MV =

[M0

M1

M2

]

, MH = [M0 M1 M2 ] , MD =

[

M O O
O M O
O O M

]

.

Hence, V is controlled invariant if AVV ⊆ VD + imBV , where
VD , V ×V ×V .
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Synopsis for Controlled Invariance
A 1-D Controlled Invariant is a subspace V s.t.

AV ⊆ V + imB

A 2-D Controlled Invariant is a subspace V s.t.

AVV ⊆ VD + imBV

A 1-D Output-Nulling subspace V is s.t.
[

A
C

]

V ⊆ (V ×{0})+ im
[

B
D

]

A 2-D Output-Nulling subspace V is s.t.
[

AV

C

]

V ⊆ (VD×{0})+ im
[

BV

D

]
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Duals of Fornasini-Marchesini Models

For the special FM models






xi+1, j+1 = A0xi, j +A1xi+1, j +A2xi, j+1 +Bui, j

yi, j = C xi, j +Dui, j
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Duals of Fornasini-Marchesini Models

For the special FM models






xi+1, j+1 = A0xi, j +A1xi+1, j +A2xi, j+1 +Bui, j

yi, j = C xi, j +Dui, j

and






xi+1, j+1 = A1xi+1, j +A2xi, j+1 +B1ui+1, j +B2ui, j+1

yi, j = C1xi+1, j +C2xi, j+1 +D1ui+1, j +D2ui, j+1

a dual can be easily defined (see Karamanciog̃lu and
Lewis, 1992).
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Synopsis for Conditioned Invariance
A 1-D Conditioned Invariant is a subspace S s.t.

A(S ∩kerC)⊆S

A 2-D Conditioned Invariant is a subspace S s.t.

AH (SD∩kerCD)⊆S

A 1-D Input-Containing subspace S is s.t.

[ A B ] (S ×R
m∩ker[ C D ])⊆S

A 2-D Input-Containing subspace S is s.t.

[ AH BH ] (SD×R
3m∩ker[ CD DD ])⊆S

6th International Workshop on Multidimensional (nD) Systems.
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Controlled Invariant Subspaces: Interpretation

The subspace V ⊆ R
n is controlled invariant if

AVV ⊆ VD + imBV

6th International Workshop on Multidimensional (nD) Systems.
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Controlled Invariant Subspaces: Interpretation

The subspace V ⊆ R
n is controlled invariant if

AVV ⊆ VD + imBV

A controlled invariant V is such that the FM model admits
a solution in xi, j ∈ V for any V -valued boundary condition:

xi, j ∈ V ∀(i, j) ∈B =⇒ ∃ui, j : xi, j ∈ V ∀ i, j ≥ 0
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Controlled Invariant Subspaces: Interpretation

The subspace V ⊆ R
n is controlled invariant if

AVV ⊆ VD + imBV

A controlled invariant V is such that the FM model admits
a solution in xi, j ∈ V for any V -valued boundary condition:

xi, j ∈ V ∀(i, j) ∈B =⇒ ∃ui, j : xi, j ∈ V ∀ i, j ≥ 0

Such control ui, j can always be expressed as

ui, j = F xi, j
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Output-Nulling Subspaces: Interpretation

The subspace V ⊆ R
n is output-nulling if

[

AV

C

]

V ⊆ (VD×{0})+ im
[

BV

D

]
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Output-Nulling Subspaces: Interpretation

The subspace V ⊆ R
n is output-nulling if

[

AV

C

]

V ⊆ (VD×{0})+ im
[

BV

D

]

An output-nulling V is such that the FM model admits a
solution in xi, j ∈ V for any V -valued boundary condition
and the corresponding output is zero:

xi, j ∈ V ∀(i, j) ∈B =⇒ ∃ui, j : xi, j ∈ V and yi, j = 0∀ i, j ≥ 0

6th International Workshop on Multidimensional (nD) Systems.
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Output-Nulling Subspaces: Interpretation

The subspace V ⊆ R
n is output-nulling if

[

AV

C

]

V ⊆ (VD×{0})+ im
[

BV

D

]

An output-nulling V is such that the FM model admits a
solution in xi, j ∈ V for any V -valued boundary condition
and the corresponding output is zero:

xi, j ∈ V ∀(i, j) ∈B =⇒ ∃ui, j : xi, j ∈ V and yi, j = 0∀ i, j ≥ 0

Such control ui, j can always be expressed as

ui, j = F xi, j
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Controlled Invariance and Local State Feedback

Plugging ui, j = F xi, j into the FM model and after a change
of coordinates with T = [T1 T2 ] with imT1 = V , we get

[

x′i+1, j+1

x′′i+1, j+1

]

=

[

A11
0 (F) A12

0 (F)

0 A22
0 (F)

][

x′i, j

x′′i, j

]

+

[

A11
1 (F) A12

1 (F)

0 A22
1 (F)

][

x′i+1, j

x′′i+1, j

]

+

[

A11
2 (F) A12

2 (F)

0 A22
2 (F)

][

x′i, j+1

x′′i, j+1

]

6th International Workshop on Multidimensional (nD) Systems.
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Controlled Invariance and Local State Feedback

Plugging ui, j = F xi, j into the FM model and after a change
of coordinates with T = [T1 T2 ] with imT1 = V , we get

[

x′i+1, j+1

x′′i+1, j+1

]

=

[

A11
0 (F) A12

0 (F)

0 A22
0 (F)

][

x′i, j

x′′i, j

]

+

[

A11
1 (F) A12

1 (F)

0 A22
1 (F)

][

x′i+1, j

x′′i+1, j

]

+

[

A11
2 (F) A12

2 (F)

0 A22
2 (F)

][

x′i, j+1

x′′i, j+1

]

x′i, j is the internal component of xi, j on V ;

x′′i, j is the external component of xi, j w.r.t. V .

Problem: Find a friend of V such that the internal and
external components of the local state are both stable.

6th International Workshop on Multidimensional (nD) Systems.



◦
•
•
•
◦

••

18/26

Controlled Invariance and Local State Feedback

Plugging ui, j = F xi, j into the FM model and after a change
of coordinates with T = [T1 T2 ] with imT1 = V , we get

[

x′i+1, j+1

x′′i+1, j+1

]

=

[

A11
0 (F) A12

0 (F)

0 A22
0 (F)

][

x′i, j

x′′i, j

]

+

[

A11
1 (F) A12

1 (F)

0 A22
1 (F)

][

x′i+1, j

x′′i+1, j

]

+

[

A11
2 (F) A12

2 (F)

0 A22
2 (F)

][

x′i, j+1

x′′i, j+1

]

If ∃F such that
(

A11
0 (F),A11

1 (F),A11
1 (F)

)

is asympt.

stable, V is said to be internally stabilisable;

If ∃F such that
(

A22
0 (F),A22

1 (F),A22
1 (F)

)

is asympt.

stable, V is said to be externally stabilisable.
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Controlled Invariance and Local State Feedback

Consider again
[

x′i+1, j+1

x′′i+1, j+1

]

=

[

A11
0 (F) A12

0 (F)

0 A22
0 (F)

][

x′i, j

x′′i, j

]

+

[

A11
1 (F) A12

1 (F)

0 A22
1 (F)

][

x′i+1, j

x′′i+1, j

]

+

[

A11
2 (F) A12

2 (F)

0 A22
2 (F)

][

x′i, j+1

x′′i, j+1

]
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Controlled Invariance and Local State Feedback

Consider again
[

x′i+1, j+1

x′′i+1, j+1

]

=

[

A11
0 (F) A12

0 (F)

0 A22
0 (F)

][

x′i, j

x′′i, j

]

+

[

A11
1 (F) A12

1 (F)

0 A22
1 (F)

][

x′i+1, j

x′′i+1, j

]

+

[

A11
2 (F) A12

2 (F)

0 A22
2 (F)

][

x′i, j+1

x′′i, j+1

]

Given V , there are many friends F . How to select those F

for which
(

A11
0 (F), A11

1 (F), A11
2 (F)

)

is asympt. stable?
(

A22
0 (F), A22

1 (F), A22
2 (F)

)

is asympt. stable?

6th International Workshop on Multidimensional (nD) Systems.
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Controlled Invariance and Local State Feedback

Let V be a basis of V . The following are equivalent:

- The subspace V is controlled invariant:

AVV ⊆ VD + imBV

6th International Workshop on Multidimensional (nD) Systems.
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Controlled Invariance and Local State Feedback

Let V be a basis of V . The following are equivalent:

- The subspace V is controlled invariant:

AVV ⊆ VD + imBV

- ∃X , Ω such that

AV V = VD X +BV Ω
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Controlled Invariance and Local State Feedback

Let V be a basis of V . The following are equivalent:

- The subspace V is controlled invariant:

AVV ⊆ VD + imBV

- ∃X , Ω such that

AV V = VD X +BV Ω

- ∃F, X such that

(AV +BV F)V = VD X

- V is (Ai +Bi F)-invariant (i ∈ {0,1,2}).

6th International Workshop on Multidimensional (nD) Systems.
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Controlled Invariance and Local State Feedback

In order to find F :

a) Solve AV V = VD X +BV Ω:
[

X
Ω

]

= [VD BV ]†AV V +H1K1 where imH1 = ker[VD BV ]

6th International Workshop on Multidimensional (nD) Systems.
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Controlled Invariance and Local State Feedback

In order to find F :

a) Solve AV V = VD X +BV Ω:
[

X
Ω

]

= [VD BV ]†AV V +H1K1 where imH1 = ker[VD BV ]

b) Let F be such that Ω =−F V :

F =−Ω(V⊤V )−1V⊤+K2H2, where kerH2 = imV

⇓

Two degrees of freedom in the choice of F : matrices K1

and K2.
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Controlled Invariance and Local State Feedback

Consider again
[

x′i+1, j+1

x′′i+1, j+1

]

=

[

A11
0 (K1,K2) A12

0 (K1,K2)

0 A22
0 (K1,K2)

][

x′i, j

x′′i, j

]

+

[

A11
1 (K1,K2) A12

1 (K1,K2)

0 A22
1 (K1,K2)

][

x′i+1, j

x′′i+1, j

]

+

[

A11
2 (K1,K2) A12

2 (K1,K2)

0 A22
2 (K1,K2)

][

x′i, j+1

x′′i, j+1

]
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Controlled Invariance and Local State Feedback

Consider again
[

x′i+1, j+1

x′′i+1, j+1

]

=

[

A11
0 (K1,K2) A12

0 (K1,K2)

0 A22
0 (K1,K2)

][

x′i, j

x′′i, j

]

+

[

A11
1 (K1,K2) A12

1 (K1,K2)

0 A22
1 (K1,K2)

][

x′i+1, j

x′′i+1, j

]

+

[

A11
2 (K1,K2) A12

2 (K1,K2)

0 A22
2 (K1,K2)

][

x′i, j+1

x′′i, j+1

]

matrices A11
i (K1,K2) do not depend on K2

matrices A22
i (K1,K2) do not depend on K1

⇓

Two independent procedures to find K1 and K2.
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Input-Containing Subspaces: Interpretation

The subspace S ⊆ R
n is input-containing if

[ AH BH ] (SD×R
3m∩ker[ CD DD ])⊆S
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Input-Containing Subspaces: Interpretation

The subspace S ⊆ R
n is input-containing if

[ AH BH ] (SD×R
3m∩ker[ CD DD ])⊆S

An input-containing S is such that an observer for the
FM ruled by

ωi+1, j+1 = K0ωi, j +K1ωi+1, j +K2ωi, j+1 +N0ui, j +N1ui+1, j

+N2ui, j+1 +L0yi, j +L1yi+1, j +L2yi, j+1

exists such that

ωi, j = xi, j/S ∀(i, j) ∈B =⇒ ωi, j = xi, j/S ∀ i, j ≥ 0

6th International Workshop on Multidimensional (nD) Systems.
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Input-Containing Subspaces and Output Injection

It can be shown that input-containing subspaces are linked
to the existence of output-injection matrices G such that

[

AH +GCD BH +GDD

](

SD×R
3m

)

⊆S

The notion of external stabilisability of an input-containing
subspace can lead to a definition of detectability subspace.

Given a detectability subspace S , we can construct an
observer such that ωi, j converges to xi, j/S as (i, j) evolves
away from B.
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Concluding remarks and future works

Concluding remarks:

Notions of 2-D controlled and conditioned invariance
with stabilisability properties;

Simple (constructive) solutions to disturbance
decoupling and unknown-input observation problems.

Future work:

Reachability subspaces and invariant zeros;

Geometric solution to singular LQ problems.
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